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ABSTRACT

Application of Chaos Methods to Helicopter Vibration
Reduction Using Higher Harmonic Control

by

Lcdr Martinus M. Sarigul-Klijn, USN

Chaos is a discipline used in understanding complex
nonlinear dynamics. The geometric and topological
methods of Chaos theory are applied, for the first time,
to the study of flight test data. Data analyzed is from
the McDonnell Douglas OH-6A Higher Harmonic Control (HHC)
test aircraft. HHC is an active control system used to
suppress helicopter vibrations. Some of the first
practical applications of Chaos methods are demonstrated
with the HHC data.

Although helicopter vibrations are mostly periodic,
evidence of chaos was found. The presence of a strange
attractor was shown by computing a positive Lyapunov
exponent and computing a non-integer fractal correlation
dimension. Also, a broad band Fourier spectrum and a
well defined attractor in pseudo phase space are
observed.

A limit exists to HHC vibration reduction due to the
presence of chaos. A new technique based on a
relationship between the Chaos methods (the Poincare
section and Van der Pol plane) and the vibration
amplitude and phase was discovered. This newly
introduced technique results in the following: 1) it
gives the limits of HHC vibration reduction, 2) it
allows rapid determination of best phase for a HHC
controller, 3) it determines the minimum HHC controller
requirement for any helicopter from a few minutes
duration of flight test data (for the OH-6A, a scheduled
gain controller for HHC appears to be adequate for steady
level flight), 4) it shows that the HHC controller
transfer matrix is linear and repeatable when the
vibrations are defined in the "Rotor Time Domain" and
that the matrix is nonlinear and nonrepeatable when the
vibrations are defined in the "Clock Time Domain."

This technique will reduce future HHC flight test
requirements. Further, the technique does not require
the helicopter to be equipped with HHC. These methods
may be applicable to other vibration control Pnd flight
testing pruolems.
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I. INTRODUCTION

A. BACKGROUND

Chaos is a motion which is sensitive to initial

conditions. Figure 1-1 depicts chaotic motion. From

nearly the same starting point, trajectories which

represent the motion of a dynamical system grow farther

and farther apart until all resemblance disappears. The

study of chaotic motion like this has inspired new

methods of analysis. Some methods, like the phase plane,

have their origin as far back as 1904 with Henri

Poincare. Other methods, like the pseudo phase space,

were discovered as recently as 1980 by Floris Takens.

The concept of chaos and these geometric methods have

revolutionized the investigation of problems in nonlinear

dynamics.

The accurate prediction of helicopter vibrations from

first principles has been the goal of helicopter dynamic

analysis. NASA's joint-industry DAMVIBS program [Ref

1.1] shows encouraging progress. Presently, one way to

get accurate vibration data is from a flight survey of an

instrumented helicopter. The literature shows that only

time domain and frequency domain spectral analysis

methods are used to study flight test data.
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The work in this dissertation is devoted to the

analysis of flight test data using the geometric and

topological methods of chaos, and is believed to be the

first such engineering application of the science of

chaos. The data analyzed is obtained from the McDonnell

Douglas Helicopter Company. They provided the flight

test data from the McDonnell Douglas/NASA/Army OH-6A

Higher Harmonic Control (HHC) test helicopter. HHC is an

active control systcm used to suppress helicopter

vibrations. This OH-6A helicopter demonstrated the first

successful application of HHC in a series of flight tests

during 1982 to 1984. The aircraft was heavily

instrumented and the results were digitized and stored on

magnetic tapes. McDonnell Douglas retrieved tnese

magnetic tapes from archives. They then translated them

from a flight test pulse code modulation (PCM) format to

a ASCII format, readable by a Digital VAX series

computer. This data was provided to the Naval

P-stgraduate School for in-depth analysis.

During the course of this research, a comprehensive

Fortran program was deveioped to analyze experimental

data using a wide variety of classical as well as the new

chaos methods. These new geometric and topological

methods are completely independent of all preconceived

helicopter models. Only actual measured data are used.

The program includes classical time and frequency domain
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analysis, including statistical estimates. The geometric

and topological methods allow analysis in 2-D and 3-D

phase-space, toroidal phase space, Poincare sections

(time strobed and space strobed), and the Van der Pol

plane. Further, options to characterize attractors by

computation of the fractal correlatio dimension and

Lyapunov exponents are provided.

Scme of the first practical applications of the chaos

methods are demonstrated using the HHC data. Many of the

ideas presented her.e may be applicable to other vibration

control and flight test data analysis problems.

B. OVERVIEW OF DISSERTATION

The second and third chapters cover background.

Chapter two provides an overview of helicopter dynamics.

The source of helicopter vibrations is also addressed.

The third chapter discusses aspects of Higher Harmonic

Control (HHC). It presents the mechanism of HHC, HHC

controllers and control law, some pertinent research, and

sketches the details of the McDonnell Douglas flight test

program.

The fourth and fifth chapters cover the classical

time and frequency dorian methods of analysis. These

metlhods are the current state-of-the-art in flight test

data reduction and interpretation.
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The sixth chapter describes the geometric and

topological methods of chaos. Only those methods with

applicability to flight test data reduction are given.

Chapter seven presents the analysis of HHC data.

Some researchers have shown that the transfer matrix,

'T,' in the HHC control law may be linear and repeatable

while other researchers have shown that it may be non-

linear and non-repeatable. This chapter shows how the

transfer matrix is linear and repeatable when vibrations

are defined in the rotor time domain, while it is non-

linear and non-repeatable when vibrations are defined in

the clock time domain.

The results from the chaos methods indicate a lower

limit to HHC vibration reduction due to chaos introduced

by the nonlinear nature of the dynamics. The eighth

chapter discusses the two Chaos methods, the Poincare

section and Van der Pol plane, that will reduce flight

test requirements by showing the limits of HHC

performance. The aircraft does not need a HHC system for

these methods to work.

The characteristics of the 'T' matrix and how it

changes with flight conditions determine the design of a

control system. Chapter nine demonstrates, for the OH-

6A, that a scheduled gain controller is adequate for

steady level flight. A new technique is presented that

provides insight into the design of the controller for a

4



helicopter, based on a few minutes duration of flight

test data. The method does not require the aircraft to

be equipped with a HHC system.

The tenth chapter discusses helicopter vibrations

using classical and chaos methods. Although helicopter

vibrations are mostly periodic, evidence of chaos was

found in the form of a strange attractor. Chaos places a

lower limit on HHC vibration reduction. Also, the

determination of the exact nature of helicopter

vibrations has important implications in helicopter

simulations. Many helicopter simulation codes assume

that the helicopter vibrations are periodic.

Chapter eleven summaries the conclusions of this

dissertation.

Appendix A gives a description of the program CHAOS,

which was developed during the course of this research.

Appendix B lists the available flight test measurements.
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Figure 1-1. Chaotic Motion. Starting from the same
starting point, two trajectories representing the motion
of a chaotic system diverge exponentially until all
resemblance disappears. Chaos is motion which has
sensitive dependence on initial conditions.

6



II. BACKGROUND - HELICOPTER VIBRATIONS

A. PURPOSE

The purpose of this chapter is to review some aspects

of helicopter vibrations.

B. FORCES IN THE ROTOR

The forces in the rotor blades are primarily periodic

components of the rotor's rotational rate and its

harmonics [Ref 2.1]. One per revolution or 'IP' are the

forces at the rotors rotational rate. Harmonics are

multiples of this 1P; for example, 2P, 3P, 4P and so cn

are the second, third, and fourth harmonics,

respectively. For the OH-6A, the rotor rotates at an

average of 483 rpm or 8.05 Hertz. Hence the 1P is 8.05

Hertz, the 2P is 16.1 Hertz, the 3P is 24.15 Hertz and so

on. Note the 1P, 2P, 3P and so on, are exact multiples

of the rotor's rotational speed. In flight, the

helicopter rotor operates at nearly a constant rotational

rate, varying less than 2 percent. Since the rotor

rotational speed varies slightly with time, then the

frequencies associated with iP, 2P, 3P and so on also

vary a small amount with time and are not constant. The

first 6 or so harmonics are important contributors to the

vibrations of a helicopter.
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The primary cause of the rotor blade vibratory forces

is due to the asymmetric loading of the rotor blades in

forward flight [Ref 2.1]. Forward flight causes the

rotor blades to experience a constantly changing airflow.

This causes a periodic variation of the rotor blade

section angle of attack. In addition, each blade

interacts with the vortices shed by other rotor blades.

These varying air loads cause the blades to vibrate. A

nonuniform inflow contributes to the vibration. Figure

2-1 from Prouty [Ref 2.2] illustrates the varying air

loads. In addition, at high forward speeds the rotor

blades will experience aerodynamic stall of the

retreating blade and Mach compressibility effects on the

advancing blade.

Figure 2-1 also provides the convention used to

measure rotor azimuthal position. From this figure, note

that zero degrees azimuth is over the tail boom, 90

degrees is on the starboard side (also known as the

advancing blade), 180 degrees is over the nose, and 270

degrees on the port side (retreating blade).

C. ROTOR DESIGN AND CONTROL

The trend up to the 1970's was to use symmetric

airfoils for rotor blades. For track and balance, they

closely match each other in aerodynamic shape, stiffness,

mass and inertia distribution. Also, airfoil sections

8



are designed to minimize control loads or changes of

aerodynamic pitching moment with changes of blade section

angle of attack. [Ref 2.3]

The rotor blade attachment to the hub is, typically,

articulated. The blades can move freely normal to and in

the plane of the rotor by the use of hinges or

elastomeric bearings at the rotor hub. The motion normal

to the plane of the rotor is called "flapping" while

"lead-lag" is the motion in the plane of the rotor.

Flapping and lead-lag motion prevent rotor blade bending

moments from being transmitted to the hub. There are two

other common mechanical attachments of the rotor blades

to the rotor hub, in addition to the articulated rotor.

These attachments are the teetering rotor and the

hingeless rotor. They all accommodate the rotor blade

flap and lag motion. The OH-6A uses an articulated rotor

hub. Figure 2-2 presents a sketch of an articulated

rotor hub. Control of the rotor blade is accomplished by

changing the pitch of the rotor blade. The resulting

change of rotor blade angle of attack changes the

aerodynamic forces on the rotor.

D. ROTOR AS A FILTER

Flapping and lead-lag hinges at the rotor hub relieve

bending moments, but shear forces still exist at the

rotor hub attachment point. "Flapwise" root shears are

9



those forces normal to the plane of the rotor.

"Chordwise" root shears are those forces in the plane of

the rotor. These forces sum at the rotor hub and form

the loads transmitted to the fuselage.

Many of the root shear summations at the rotor hub

are zero. This is because rotor blade root shears are

periodic in nature (1P, 2P, 3P and so on) and because of

the symmetric arrangement of the rotor blades about the

rotor hub. The rotor acts as a filter, letting only a

limited number of vibrations reach the fuselage [Ref

2.4]. In the case of a 4 bladed rotor, the only

vibrating components reaching the fuselage is the 4P, 8P,

12P, etc. For a 4-bladed rotor:

3P and 5P flapwise blade root shears result in 4P

hub pitching and rolling moments in the airframe.

4P flapwise blade root shears feed into the

airframe as 4P vertical forces.

3P and 5P chordwise root shears produce 4P

airframe hub forces in the fore and aft and lateral

directions.

4P chordwise root shears result in 4P hub yawing

moments.

The 4P is at about 32 hertz in the OH-6A. The higher

harmonics on 4P (8P, 12P, 16P, etc.) will also filter

from the rotor to the fixed fuselage system. The

amplitudes of these forces are much lower than the 4P and

10



are often ignored in analysis. Notice that the force

transmitted to the fuselage from the hub is not at the

same frequency as the exciting frequency in the rotating

system.

Some caveats apply to this filtering process. First

this filtering works only for a perfectly symmetric rotor

system. Asymmetries in the rotor blades can produce

terms at frequencies other than the 4P. Also,

maneuvering flight will lead to leakage of vibrations at

frequencies other than the 4P to the fuselage. In fact

Gunsallus et al. [Ref 2.5] demonstrated the capability of

computing all the harmonics of the rotating rotor blade

motion by measuring vibrations only in the fixed

fuselage. Clearly the rotor is not a perfect filter.

The filtering process allows components of all

frequencies to pass to the fuselage.

These rotor hub forces are the primary cause of the

fuselage vibrations. The rotor shakes the fuselage at

the rotor hub attachment to the rotor mast, far above the

fuselage. The fuselage will respond to these excitations

and cause the pilot's seat to vibrate. Finally, the

pilot's seat vibration causes the pilot to vibrate.

E. OTHER SOURCES OF HELICOPTER VIBRATIONS

Although the main rotor is the major source of

helicopter vibrations, there are other sources. The tail

11



rotor, its drive shaft, the engine and transmission all

produce vibration. The frequency of their contribution

is usually much higher than the rotors. The impact of

the rotor downwash on the fuselage is yet another source.

Finally, the fuselage response to turbulence adds to the

total vibration picture of the helicopter.

F. SUMMARY

The major source of vibration in a helicopter is the

aerodynamic excitation that comes from the rotor. This

vibration, in theory, is at a single frequency. The next

chapter discusses a method of eliminating this vibration.

12
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III. BACKGROUND - HIGHER HARMONIC CONTROL

A. PURPOSE

This chapter reviews Higher Harmonic Control (HHC).

Also described are various controllers used for vibration

control. A brief overview of research efforts in HHC is

given followed by a description of the McDonnell

Douglas/Army/NASA OH-6A HHC flight tests.

B. WHAT IS HHC ?

The rotor is the principal source of vibrations in a

helicopter. Also, these vibrations are caused

essentially at a single frequency. Active vibration

suppression systems can counter single frequency

vibrations. In contrast to other helicopter vibration

control devices, such as fixed-tuned fuselage vibration

absorbers, HHC alleviates vibration by modifying the

excitation (aerodynamic loading) at the source. HHC is a

computer controlled active vibration suppression system

which counters, in the case of a 4-bladed rotor, the 4P

vibration induced from the rotor. It continuously

monitors vibrations caused by the rotor and suppresses

them through high frequency rotor blade feathering. The

feathering is at an integer multiple (higher harmonic) of

15



the rotor rotational rate. The name comes from this

fact.

Two schemes currently exist for HHC. All flight

tests to date and all wind tunnel tests but one, have

used "direct HHC." In this scheme, HHC works through the

existing flight control swashplate. The swashplate is a

part of the helicopter control system. It transmits the

control inputs from the stationary or fuselage frame to

the rotor or rotating frame. The stationary portion of

the swashplate is oscillated by actuators fixed to the

fuselage with continuous variations of amplitude,

frequency and phase. Certain combinations of these

parameters result in significant reductions of rotor

vibrations. The amplitude of swashplate excitation is

usually small, in the order of 0.20 inches measured at

the actuators. The swashplate is oscillated at a

frequency equal to the number of rotor blades times the

rotational rate. In the OH-6A this turns out to be the

4P or at approximately 32 hertz. The swashplate

excitation generates new incremental airloads which

cancel the vibratory blade loads that cause vibration.

There are several modes of motion of the swashplate which

may be described as follows:

The "lateral" mode refers to tilting the

swashplate laterally or in side-to-side direction

only.

16



The "longitudinal" mode refers to tilting the

swashplate in the longitudinal direction or in the

fore and aft direction only.

The "collective" mode refers to moving the

swashplate collectively or in the up and down

direction only.

Optimal vibration reduction is seen to occur with

simultaneous application of lateral, longitudinal and

collective swushplate excitation.

As explained earlier, the rotor acts as a filter.

This process may also work in the opposite direction.

Tilting or translating the stationary portion of a 4-

bladed rotors swashplate at a 4P frequency results in

blade feathering at frequencies of 3P, 4P, and 5P in the

rotating system. This is summarized as follows:

4P collective swashplate movement results in 4P

rotor blade feathering.

4P lateral or longitudinal swashplate movement

results in 3P and 5P blade feathering.

By carefully varying the amount of collective, lateral,

and longitudinal swashplate excitations any combination

of 3P, 4P, and 5P blade feathering may be obtained.

The second approach is to control the pitch of each

rotor blade independently. Known as "individual blade

control" (IBC), each rotor blade has an individual

electro-hydraulic actuator. Signals from sensors mounted

17



on the blades supply appropriate control commands. To

transmit the pilot's commands requires a reliable means

of going from the fixed to the rotating system. The IBC

is seen to have one major advantage. It can control more

than three swashplate degrees of freedom. For example,

IBC for a four bladed rotor can control more than just

the 3P, 4P, and 5P frequencies. However, concerns of

reliability prevent its current implementation on any

full scale helicopter.

C. CONTROLLERS

A control system (controller) is responsible for the

swashplate tilting in a direct HHC system. The objective

of the controller is to reduce helicopter vibrations by

determining the proper amount of lateral, longitudinal,

and collective swashplate excitation. Best vibration

reduction may be obtained by exciting all three modes of

swashplate tilting simultaneously. In a direct HHC

system, the controller attempts to reduce the vibrations

in a "measured response." Usually, the measured response

is the vibrations under the pilot's seat. In contrast,

in IBC HHC, the measured response is always located on

the rotor blade.

Helicopters can vibrate in three different

directions: fore and aft (longitudinally), sideways

(laterally) and up and down (vertically). To describe a
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single frequency vibration requires two quantitics, an

amplitude and a phase. However, any single frequency

vibration can be broken into a sine and cosine part. It

is simpler to use the two amplitudes of the sine and

cosine parts in numerical computations. It follows,

then, that six quantities, two each for vertical,

lateral, and longitudinal, respectively, is enough to

describe helicopter vibrations. Using this concept, most

wind tunnel and flight tests use the following model for

IIHC:

: i'i (3.1)

where, for the four-bladed OH-6A:

1z' is a 6xl vector of measured 4P (32 hertz)

vibrations (g's).

'zo ' is a 6xl vector of baseline 4P (32 hertz)

vibrations (g's). The 'z' and 'zo'vectors consist of the

sine and cosine components of lateral, longitudinal, and

vertical vibrations for a total size of six elements.

'T' is a 6x6 control response matrix that relates the

swashplate movements to the vibration response of the

helicopter (g's/inches).

'u' is a 6xl vector of swashplate 4P (32 hertz)

movement. It consists of the sine and cosine components
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of lateral, longitudinal and collective swashplate

excitation (inches).

This control law assumes a linear static transfer

relationship (matrix 'T') between command 4P swashplate

motion and 4P fuselage vibrations. The equation states

that the system 4P response (vector 'z') consists of a

baseline response (vector 'zo') plus a response which is

related to the 4P swashplate inputs (vector 'u') by a

transfer matrix ('T'). The transfer matrix 'T' and the

baseline vibrations 'zo' depend on flight conditions such

as forward speed.

Controllers are classified as being either "open-

loop" or "closed-loop." There is no direct feedback of a

measured response for open-loop controllers while there

is a feedback of a measured response for closed-loop

controllers.

Furthermore, two versions of the above control law

exist. The "local model" assumes the control law is

linear about the current control value. The local model

is applicable even for nonlinear conditions, since the

transfer matrix 'T' is linearized about the current value

and changes in swashplate excitation 'u' are small. The

'global model' assumed the control law is linear for the

entire range of control.

There are two methods for identifying the transfer

matrix, 'T,' and the baseline vibrations vector, 'zo.'
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In the "off-line identification method," the

characteristics of the 'T' and 'zo ' are assumed

invariant. This assumption is appropriate only to the

global model. Generally, these matrices are generated as

a result of a least squares estimate of wind tunnel or

flight test data. These matrices are then used during

later flights. The off-line controllers are further

classified. In the "fixed-gain controller" the control

law matrix remains unchanged for all flight conditions.

The "scheduled-gain control" uses pre-determined

libraries of matrices, based on "measured flight

conditions" such as aircraft airspeed.

"On-line identification" continuously updates the

characteristics of the matrix with time. The update time

is normally in the order of once every rotor revolution.

These controllers are also called "adaptive controllers"

since the "control gains" vary with time. The on-line

identification is applicable to both the global and local

models. Many versions of this identification scheme are

used. While some algorithms update the 'zo' vector only,

some update both 'zo' and 'T'. Methods of updating the

matrices include Kalman estimators and Least Mean Square

adaptive inverse control. Finally, to limit the rate at

which the control law changes many adaptive controllers

add "caution" terms.
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Considerable disagreement prevails over which

controller is appropriate. Also, other control models

exist, but are not tested. Controllers are the subject

of much research, as shown in the next section.

D. PREVIOUS RESEARCH

The foregoing review of previous research efforts is

by no means comprehensive, but it covers some important

contributions. The review is categorized under three

headings: theoretical analysis and numerical simulation,

wind tunnel tests, and lastly, flight tests.

1. Theoretical Analysis and Numerical Simulation

HHC is modelled in most major helicopter

comprehensive simulation codes. Wayne Johnson (Ref 3.1]

has modelled HHC in CAMRAD (Comprehensive Analytical

Model of Rotorcraft Aerodynamics and Dynamics). Karan

Sangha [Ref 3.2] modelled HHC using McDonnell Douglas's

RACAP (Rotor/Airframe Comprehensive Aeroelastic Program)

in 1987. He concluded that HHC is independent of the

modal character of the rotor. Kip Nygren [Ref 3.3] in

1989 investigated controllers using Kaman's DYSCO

(Dynamic System Coupler Program). He showed that fixed-

gain control can adequately reduce vibrations. However,

the flight conditions are required to be within about 20

knots of the flight conditions used to calculate gains

for the controller.
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Daughaday in 1967 [Ref 3.4] conducted a study of

HHC on a two-bladed teetering rotor. Early studies

include that of Shaw in 1968 [Ref 3.5] and Balcerak and

E ickson in 1969 [Ref 3.6]. McHugh and Shaw in 1978 [Ref

3.7] suggested one of the earliest HHC algorithms. In

1980, Yen [Ref 3.8] conducted a theoretical investigation

of HHC for two and four bladed rotors. In 1981, Chopra

and McCloud [Ref 3.9] investigated four different HHC

feedback controllers. Johnson [Ref 3.10] provides a

review of self-tuning regulators available before 1982 on

both a theoretical and experimental basis. Gupta and Du

Val [Ref 3.11] investigated an optimal control approach.

Unlike other control algorithms, their approach was able

to lock on the vibration gain and phase without resorting

to harmonic analysis. However, they assumed the system

to be linear-time-invariant, which is not always valid.

In 1983, Molusis [Ref 3.12] conducted a simulation study

which showed that nonlinearity is the main reason for the

failure of HHC algorithms to fully minimize vibrations in

his previous wind tunnel tests. Ham studied the

application of individual blade control (IBC) to HHC [Ref

3.13]. Davis [Ref 3.14] in 1984 compared different

controller configurations. He used a computer simulation

that models the H-34 rotor mounted on the NASA Ames Rotor

Test Apparatus and found no distinct advantage for any of

the three controller types evaluated. Jacklin in 1985
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[Ref 3.15] used a Least Mean Square algorithm to solve

for the control transfer matrix. Hanagud et al. in 1986

[Ref 3.16] developed a technique to identify the transfer

matrix in a HHC model. Robinson and Friedmann in 1989

[Ref 3.17] included the use of quasi-steady aerodynamics

in their study of HHC. Hall and Wereley in 1989 [Ref

3.18] used classical control theory to study HHC. They

concluded that real time adaptation of the control

transfer matrix is not crucial for satisfactory

performance of HHC.

2. Wind tunnel Investigations

There have been seven wind tunnel investigations

of HHC reported to date. In 1974, McCloud and Kretz [Ref

3.19], and Sissingh and Donham [Ref 3.20] concluded that

HHC would work with blade feathering of less than one

degree. In 1980, Wood et al. [Ref 3.21] tested a 4

bladed articulated rotor model using open loop collective

mode only. In 1980, Shaw and Alboin [Ref 3.22], first

applied closed loop HHC experimentally. They achieved 90

% suppression of the three independent vibratory hub

loads. Also in 1980, Hammond [Ref 3.23] attempted the

first experimental application of adaptive

identification. He used a Kalman filter estimation with

stochastic (cautious) control to identify the transfer

matrix required to minimize vibration. Molusis, Hammond,

and Cline extended this work in 1981 to include fixed

24



gain controllers (Ref 3.24]. The scheduled gain

controllers would saturate without achieving reductions

in vibration levels. They concluded that the transfer

matrix was both nonrepeatable and nonlinear. Shaw et al.

(Ref 3.25] demonstrated in 1985 that a fixed gain control

could provide 90 % reduction throughout a large flight

envelope. In contrast, he found the control transfer

matrix was linear and highly repeatable.

3. Flight Tests of HHC

There have been four known flight tests of HHC to

date. Bell Helicopter attempted HHC in 1962 with a two

bladed Bell UH-lA helicopter without success. Drees and

Wernicke [Ref 3.26] reported that the vibration

reductions were small. The first successful flight

demonstration of HHC was in 1983 by Wood et al. [Ref

3.27] on a four bladed OH-6A. Wood and Powers in 1980

[Ref 3.28] presented a preliminary design study for this

aircraft. Straub and Byrns in 1986 [Ref 3.29] fully

documented this flight test. Walsh [Ref 3.30] and Miao

et al. [Ref 3.31] reported on the open loop HHC flight

demonstration on a four bladed S-76A helicopter during

1985. They achieved significant vibration reductions at

forward speeds up to 150 knots. Polychroniadis and

Achache [Ref 3.32] reported the open loop and closed loop

HHC flight tests on a three bladed SA 349 Gazelle

helicopter conducted in France in 1985. They also
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achieved 80 % reductions in the cabin vibrations at 150

knots.

E. THE MCDONNELL DOUGLAS/NASA/ARMY HHC TEST PROGRAM

1. Scope of Tests

This section briefly describes the OH-6A flight

tests. The flight test program consisted of three

distinct phases covering the period of 1980 to 1984.

First, the flight test OH-6A underwent major changes to

include the HHC system. Then, approximately 15 flight

hours were devoted to open loop testing. In open loop

testing, the phase and amplitude of the HHC blade

feathering was set manually. Over 26 flight hours were

devoted to testing of the closed loop system. In closed

loop operation, a microprocessor controlled the phase and

amplitude. Figure 3-1 presents a summary of the results,

the flight conditions, and modes tested. The figure

presents the 4P pilot seat vertical acceleration obtained

by Fourier analysis using the McDonnell Douglas HARMONS

program. Tests include all three open loop (manual)

modes and eight closed loop (computer controlled) modes

using different controller softwares. The figure depicts

two of the best closed loop modes. The airspeed ranged

from hover and 40 to 100 knots, in 10 knot increments.

In open loop testing, for each airspeed, the amplitude of

excitation was fixed, and the phase was varied in
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increments of 30 degrees over a total range of 0 to 360

degrees. Each phase sweep for a given airspeed required

an average of 15 minutes. Figure 3-1 presents data at

the best phase setting obtained from open loop testing.

2. Description of Test Aircraft

The OH-6A used for HHC testing was a one of a

kind aircraft. A previous flight test program modified

the OH-6A to include a 1,500 psi boost system for its

primary controls. This irreversible control system

prevented feedback from the HHC actuators to the pilot's

controls. Three electro-hydraulic actuators replaced

existing links in the primary control system. They were

located between the mixer and the stationary swashplate

just below the rotor head. The actuators were capable of

changing the blade feathering angle by 2 degrees, about

11 % of the total range available. The three

accelerometers mounted under the pilot's seat sensed the

vibrations. The analog acceleration signals were sent to

an electronic control unit (ECU) for conversion to

digital signals and then transferred to the airborne

digital computer. A Sperry Flight Systems multiplex

remote terminal unit Type 3A served as the on-board

computer and determined the required blade feathering.

The computer sent its digital commands back to the ECU,

which in turn converted them to analog signals. These

analog signals drove the three actuators that tilted the
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stationary swashplate. The resulting swashplate movement

caused the blades to change pitch. The high frequency

feathering of the rotor blades generated aerodynamic

forces. These forces were transmitted through the rotor

blades, rotor hub and the fuselage to reduce the

vibration sensed under the pilot's seat. Figure 3-2

presents a sketch of the HHC system installed on the OH-

6A test aircraft.

The Airborne Data Acquisition System measured and

recorded the flight test data. Strain gages placed on

one rotor blade of the main rotor measured flaowise

bending, chordwise bending, and torsion moments. An LVDT

measured HHC actuator positions while potentiometers

measured blade feathering, flapping and lead-lag angles.

There were three groups of triaxial accelerometers that

measured fuselage accelerations. There were strain gages

that measured tail boom and main rotor mast bending

moments. The pitch link loads, the main rotor RPM, the

main rotor shaft torque, the aircraft airspeed and the

main rotor azimuth position were all sensed. Appendix B

presents a list of measurements made available from these

flights to the Naval Postgraduate School.

3. Method of Tests

The pilot stabilized the aircraft at the flight

test airspeed for at least 20 seconds, while the flight

test engineer operated the HHC system. In open loop
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testing, he turned the system on and off, selected mode,

amplitude and phase of excitation. In closed loop

testing, he turned the system on and off and selected

gains on the control matrices. The flight test engineer

turned on data recording for about ten seconds during the

most stable conditions. After the flight, five second

time slices of the most stabilized portion of the data

were selected. These time slices constitute the data

used in the flight tests reports.

4. Results

The principal objective of the flight test was to

minimize 4P vibration only, rather than to counter all

vibrations inherent in the helicopter. Figure 3-3

presents the open loop test results for lateral

swashplate excitation equivalent to + 0.33 degree of

blade angle of attack change at airspeeds from 60 to 100

knots. The figure depicts the 4P (32 hertz only)

accelerations in g's as measured vertically and laterally

by accelerometers mounted under the pilot's seat. These

values were obtained by Fourier analysis by a HP 5423

spectral analyzer. Notice that there exists up to 100

percent difference between these estimates and those in

Figure 3-1. The estimates in Figure 3-1 and Figure 3-3

were computed using different methods. The frequency

domain chapter discusses the difficulties in obtaining

accurate Fourier estimates.
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The input phase refers to the phase of the

swashplate tilting in relation to the main rotor

position. In the lateral mode, zero degree controller

phase corresponds to tilting the swashplate to the port

when the four rotor blades were at 0, 90, 180 and 270

degrees rotor azimuth, respectively. 180 degrees

controller phase corresponds to tilting the swashplate to

starboard when the four rotor blades were at 45, 135,

225, and 315 degrees rotor azimuth, respectively. Notice

360 degrees of input phase to the controller corresponds

only to 90 degrees of rotation of the rotor. Also, the

data for each of these graphs in Figure 3-3 come from 14

different flight test points. A typical series of tests

at each airspeed took 10 to 15 minutes to record.

From Figure 3-3, it is apparent that for certain

controller phases, HHC has the ability to make the

helicopter vibrate more. For all the airspeeds tested,

maximum vibration occurs at 90 degree controller phase

and minimum vibration at 300 degree manual controller

phase. By using only the lateral excitation of the

swashplate, the 4P vertical vibration are reduced from

0.25 g to 0.04 g (at 60 knots). Similarly, the

reductions for 4P lateral vibration are from 0.12 g to

0.02g (at 60 knots).

Wood et al. [Ref 3.28) and Straub and Byrns [Ref

3.29] summarize other results from this flight test.
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They conclude that the 4P vibrations under the pilot's

seat were significantly reduced with the HHC system. The

system did not adversely affect blade loads or helicopter

performance.
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IV. TIME DOMAIN ANALYSIS

A. PURPOSE

State-of-the-art analysis of flight test data

includes the use of both time and frequency domain

methods. This chapter outlines the basics of measuring

data in the time domain. The next chapter describes the

analysis in the frequency domain. The overview includes

some of the common measurements in the time domain. An

excellent source for the time domain analysis is Otnes

and Enochson [Ref 4.1].

B. DIGITAL SIGNALS

Measurement of any quantity is initially as an analog

signal. In an analog signal, the amplitude of the signal

can vary continuously with time. At a given instant, the

signal can assume any value within a relatively wide

range of values. Translation of analog signals to

digital signals occurs in a flight test for transmission,

storage and subsequent analysis. This analog-to-digital

conversion process introduces errors into the data.

Generally, there are three steps to convert an analog

signal to a digital signal; namely, sampling, quantizing

and encoding. Figure 4-1 illustrates the sampling

process. Sampling a continuous analog signal in time
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forms a series of values. Consider an analog signal that

has a frequency spectrum covering a band from zero to an

upper frequency (known as the "Nyquist frequency"). It

is possible to transmit all the information by sampling

the signal, at regular intervals, at twice the rate of

the Nyquist frequency. Sampling converts a continuous

signal to digitized signal in time.

On the OH-6A, the data sampling rate was 1230 samples

per second or loosely said, 1230 Hertz. This implies

that the upper limit in the frequency resolution, or, the

Nyquist frequency, is 615 Hertz.

The second step, quantizing, samples the signal in

terms of amplitude. Figure 4-2 illustrates this process.

Quantizing divides the entire amplitude range into a

number of discrete levels, known as "quantum levels."

Comparing the amplitude of the analog signal with the

quantum levels results in a quantum level that is nearest

to the amplitude of the analog signal. That is, the

quantum level approximates the actual amplitude. Hence

the quantizing process introduces a quantization error.

The maximum error is one half of the quantum step size,

resulting in THE major source of error in measurement of

flight test data.

In the flight test data of OH-6A, the number of

quantum levels was 1024. This results in a the maximum

error of about 0.05 percent. In practice, the
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quantization error is found to be more than this. The

limits of the full scale range are rarely set about the

correct interval. For example, Figure 4-3 presents five

seconds of flight test data for the rotor rpm of the OH-

6A. Quantization error is readily apparent. In this

case, the full range of acceptable values for rpm were

from 14 percent to 206 percent. However, once airborne,

the rotor rpm stays within 1 to 2 percent of its normal

100 percent rpm. The quantization error is large in this

case because the range of acceptable input values is

large, while the fluctuations about an average point is

small. This example reflects one of the worst

quantization errors for the OH-6A.

The final step, encoding, is the translation of the

quantum levels to fewer levels, but using several

discrete elements. In other words, translate the 1024

quantum levels to only 2 quantum levels (binary) by using

several bits. The OH-6A flight test instrumentation

system used a 10 bit binary word, hence 1024 quantum

levels can be represented (2 raised to the 10th power).

C. MEASUREMENTS IN THE TIME DOMAIN

Once the data is obtained as a digitized time series,

different "measures" may be computed. 'N' represent the

number of digitized values and 'x' represent the
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digitized amplitudes of a signal. They form a data

record. The mean 'xa' is then defined as:

X\ + X, (4.1)

The energy content of the signal in the time domain is

given by:

ENERGY - -, 2 (4.2)

This is the well known formula for variance or the first

moment of the mean. The vibratory energy of a signal is

equal to the variance in the time domain.

The square root of the variance is the standard

deviation, while the second moment of the mean yields

skewness and the third moment of the mean is referred to

as kurtonis. Shewness is a nondimensional number which

characterizes the degree of asymmetry of the data around

its mean. Kurtosis is also a nondimensional quantity

that measures the relative peakedness or flatness of the

distribution of the data relative to a normal

distribution.

D. ERGODIC AND STATIONARY DATA

A major assumption made in Fourier Analysis is that

the measured data is ergodic and stationary.
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Data is stationary if the mean and variance are

independent of time. In other words, the values for the

mean and the variance stay constant for all data segment

sizes. For example, Figure 4-4(a) presents a signal with

a stationary mean, variance and frequency. Figure 4-4(b)

presents a signal with stationary mean but with a non-

stationary variance and frequency. Figure 4-4(c)

presents a signal with non-stationary mean but stationary

variance and frequency.

Ergodicity is the property that requires the short

time averages to be equal to averages over the entire

process. In order to test whether a signal is stationary

and/or ergodic, a long record is examined by partitioning

it into a number of sections of equal length. if the

mean value and variance obtained from each partitioned

section are the same as those calculated from the entire

record, the signal is considered as ergodic. Note that

in figure 4-4, only part (a) is ergodic.

E. SUMMARY

Quantization error is normally the major source of

error introduced by a practical flight test

instrumentation system. Also, the Nyquist frequency

limits the upper frequency of the input signal. Major

assumptions are made that the input data is ergodic and
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stationary, although the real flight test data is seldom

ergodic and stationary.
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taken during smooth steady level flight with HHC system
off.
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V. ANALYSIS IN THE FREQUENCY DOMAIN

A. PURPOSE

An alternate method to analyze flight test data is in

the frequency domain. The aim of this section is to

introduce the fundamental ideas of Fourier analysis.

Discussion includes limitations of these transforms. A

good source for further information may be found in [Ref

5.1 to 5.4].

B. FOURIER TRANSFORMS

Our ear converts sound waves traveling through time

into a speitrum of frequencies, a description of the

sound as a series of volumes at distinct pitches.

Similarly, Fourier analysis breaks down a function in

time into harmonic components that have varying

frequencies, amplitudes and phases.

Any periodic waveform is equivalent to the sum of a

number of sinusoids. Consider a signal which consists of

two sinusoids, a high and low frequency sine curve as

shown in figure 5-1(a). Looking down the frequency axis

gives part (b). This is the time domain view of the

waveform, obtained by adding the sinusoids at each moment

in time. Looking down the time axis gives part (c), the

signal as observed in the frequency domain. The switch
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from the time to the frequency domain produces no new

information. The same information exists, but the

presentation is different.

The Fourier transform converts a time domain

function, 'x(t)', into the frequency domain function,

'S(f).' The complex form of this transform is:

_) : l/I, ,It (5.1)

'S(f)' is known as the Fourier transform of 'x(t).' It

is in general complex, and. contains amplitude and phase

information for all frequencies which make up 'x(t).'

Figure 5-1(c) represents the amplitude spectrum of a

signal. However, full representation of a si,1al in the

frequency domain requires two numbers at each frequency.

For instance, these can be the amplitude and phase. The

signal may also be represented as a single complex number

or by a sum of weighted sines and cosines at each

frequency. A signal in the frequency domain requires two

plots for full representation. These plots may either be

an amplitude and phase plot versus frequency, a real and

complex plot versus frequency or a cosine and sine plot

versus frequency. However a signal in the time domain

requires only one plot of amplitude versus time for full

representation.
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A commonly used representation is the "Power Spectral

Density" or PqD graph. The vertical axis gives the

square of the amplitude and the horizontal axis indicates

frequency. For example, an accelerometer provides

measured accelerations in the units of "g's". On a PSD,

the plot is "g's squared" versus "frequency." Therefore,

the units of a PSD are really in terms of energy not

power.

C. PARSEVAL'S THEOREM

"Parseval's theorem" states that the total power in a

signal is the same, whether computed in the time or the

frequency domain. The sum of a PSD from zero to the

Nyquist frequency gives the total energy in the frequency

domain. As energy is invariant, the energy computed in

the time domain (variance) is the same as computed in the

frequency domain.

D. PHASE SPECTRUMS

Use of phase spectrums is not as common as the use of

PSD. In Figure 5-2, the upper plot gives the PSD of the

vertical acceleration under the pilot's right seat. The

lower plot is the phase spectrum of the same

acceleration. Note that the phase spectrum gives equal

weight to reporting the phase of both the low and high

amplitude signals. It is difficult to determine the
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phase at a particular frequency. Generally, not much

attention is given to phase determination in spectral

analysis.

A phase is measured or provided relative to a

reference quantity. In figure 5-2(b), the phase is shown

relative to the start of the data record. A different

data record start produces a completely different phase

spectrum. A possible solution is to fix the start with

respect to some quantity. For example, main rotor

azimuth position is a common adopted choice. In figure

5-2(b), the start of the data record is at 0 degree rotor

blade azimuth position, and the plot may be called as a

relative phase plot.

E. DIFFERENT METHODS FOR PSD's

There are many methods of obtaining the PSD of a

signal. Figure 5-3 [Ref 5.4] summarizes many spectral

estimators. Part (h) is the true PSD. Observe the large

differences between each of the estimates. The visual

comparison of spectral estimates can often be misleading.

The sharpest of the peaks of a spectral estimate is not

an indication of the resolution of a spectral estimate.

The classical PSD estimation is the periodogram method,

part (i). Other methods require a prior knowledge of the

PSD curve to provide a model to the estimator. The

periodogram method is superior for HHC applications,
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since it requires no model. We will limit our discussion

to the periodogram method, although, all of the

limitations discussed below apply equally to other

methods.

F. LIMITATIONS AND RESTRICTIONS

Digitizing the data leads to some limitations and

restrictions. The discrete data points used in obtaining

a Fourier transform represent a continuous time signal.

If data acquisition time or period is 'T,' the number of

data points is 'N,' and the sampling rate 'dr,' then

N = dr (5.2)

For example, five seconds (T) of data at 1230 data

samples per second (dr) was made available in HHC flight

test. This data record yields a total of 6150 data

points (N).

Many important restrictions also occur because of the

finite record length of the data. For practical reasons,

flight tests restrict the period, 'T,' to about 5

seconds. Some restrictions are summarized below.

1. Periodic, Stationary and Ergodic Data

The first major restriction on the use of Fourier

transform is that the time series must be periodic.

Also, the data must also be stationary and ergodic.
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These restrictions may be overcome by allowing the

period, 'T,' of the signal to approach infinity, which is

impossible in flight test.

2. The Fast Fourier Transform

The most common way to obtain the periodogram PSD

is the Fast Fourier Transform (FFT). The FFT is an

algorithm for obtaining efficiently the fourier transform

of a time series. The algorithm operates on an array of

N complex data points in the time domain. It produces an

array of N/2 complex data points in the frequency domain.

An important restriction in using this algorithm is that

the number of data points in the time domain must be a

power of 2 (for example, 512, 1024, 2048, etc.).

Normally the time domain data is real, so that the

imaginary part of each input data point will be zero.

The PSD amplitude (energy) is the sum of the

squares of the real and imaginary parts of the FFT's

complex output. Fourier phase is the arc tangent of the

imaginary part divided by the real part.

3. Nyauist Criterion and Aliasing

A limitation exists on the frequency range of the

PSD and this imposes an important restriction in

practical applications. The frequency range of the

Fourier transform is from zero to the Nyquist frequency.

The Nyquist frequency is equal to one half the sampling
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rate. For the HHC sampling rate of 1230 hertz, the upper

limit or Nyquist frequency is 615 hertz.

Note that this Nyquist frequency is independent

of the number of samples in the record. The frequency

resolution may be increased by increasing the number of

samples (by taking longer periods of data). However,

this does not increase the maximum frequency in the

spectrum. In other words:

(if = 1 (5.3)
7'

For example, a 5 seconds of flight test data

results in resolution of 1/5 Hertz. This implies that

the minimum difference between adjacent frequencies is

1/5 Hertz. This is yet another restriction in obtaining

an accurate estimate of the PSD.

If sampling is slower than twice the frequency of

the input signal, then a false low frequency appears in

the PSD. This phenomenon is called as "aliasing."

Shannon's Sampling theorem states that a sampled time

signal must not contain components at frequencies above

half the sampling rate (the Nyquist frequency or "Nyquist

criterion"). If the frequency of the input signal is

greater than half the sample rate, a spurious signal will

result. As an example, for a 615 hertz Nyquist

frequency, a true signal containing a component at 700
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Hertz would show up on a PSD at 530 Hertz. The problem

of aliasing is prevented by adding a low-pass or

"antialias" filter before the sampler to limit the input

frequency range.

Shannon's sampling theorem does not imply that

the sampling rate must be more than twice the highest

frequency of interest, but that filtering the high

frequency components out must occur before sampling the

signal.

4. Leakage and Windowing of Data

Another important problem is due to leakage.

This problem is best illustrated by an example. Consider

a sine curve as shown in Figure 5-4. In part (a) is the

sine curve. In part (b), recorded is an integral number

of cycles of this sine curve over a duration, 'T.' As

stated earlier, an implicit assumption is the data record

containing the sampled block repeats throughout time. In

part (c), the assumed signal exactly matches the input.

Part (d) presents the PSD obtained in such a case and it

contains a single spike as expected.

Now consider Figure 5-5, again the case of a

continuous sine curve. The failure to select an integral

number of cycles of the sine curve results in the highly

distorted waveform shown in part (c). Part (d) presents

the PSD in this case. The smearing of energy throughout

the frequency domain is called "leakage" and results in
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distortion of the PSD. Leakage occurs because of the

finite length of time, 'T,' of the data record.

A solution to leakage is to window the data as

illustrated in Figure 5-6. Note that windowing the data

TAMPERS with the data. Figure 5-6(f) shows that the PSD

is closer to the correct single line, but not exactly it.

Typical window functions include Parzen, Hanning,

Hamming, and Welch. The difference between these

functions lie in subtle trade-offs among various figures

of merit used to describe the narrowness or peakedness of

the PSD. There exists effectively no difference between

any of these window functions for practical spectral

analysis [Ref 5.1].

6. Accuracy of PSD's

The accuracy of PSD estimates do not increase

with the number of sampled data points, 'N.' The

variance of the PSD estimate at a selected frequency is

always equal to the square of its expected value at that

frequency. In other words, the standard deviation is

always 100 percent of the value of the PSD estimate.

Let us consider the effect of increasing 'N.'

Using a longer duration of data at the same sampling rate

leaves the Nyquist critical frequency unchanged, but

gives finer frequency resolution (more frequency bins).

Alternatively, sampling the same length of data with a

finer sampling interval leaves the frequency resolution
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unchanged, but the Nyquist frequency range now extends up

to a higher frequency. In neither case do the additional

samples reduce the variance of estimated PSD at any

particular frequency.

There are methods to increase the accuracy of a

PSD. One simple method is to compute a PSD estimate with

a finer discrete frequency spacing than desired. A

smooth estimate is obtained at the mid-frequency by

summing the PSD estimates at adjacent discrete

frequencies. The variance of the estimated sum will be

smaller than the individual estimates. This procedure

trades frequency resolution for greater accuracy in the

estimate of the amplitude of the PSD.

G. SUMMARY

This chapter summarized some of the many facets of

frequency domain analysis. The sampled data is assumed

to be stationary, ergodic and periodic. Many important

restrictions are due to digitization of data with finite

record length. The peak value at a given frequency gives

an inaccurate estimate of the PSD. There are many

methods to calculate PSD, each giving a different

estimate. Also, any estimate may be obtained by

"tampering" the data appropriately.
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(a)

< 
<

Time Frequency

(b) (c)

Figure 5-1. The frequency domain. (a) Time and
frequency domains represented in three dimensions. (b)
Time domain view. (c) Frequency domain view. [from
Turner, o. o. (1920) with permission of Springer-Verlag,
copyright 1988].
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Figure 5-3. Comparison of Power Density Spectrum
Estimators. (a) Autocorrelation. (b) Covariance. (c)
Modified covariance. (d) Burg. (e) Recursive MLE. (f)
MYWE. (g) LSMYWE. (h) True PSD. (i) Akaike. (j)
Mayne-Firoozan. (k) Durbin. (1) Periodogram. (m)
Blackman-Tukey. (n) MVSE. [from Kay, S. M. (1988) with
permission of Prentice-Hall, copyright 1988].
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(a)

(b)

" ° °

(c)

.(d)

F ,.QuecV

Figure 5-4. Periodic Signal. When the signal is
periodic within the truncated time record, the assumed
repeats match the input. (a) The signal. (b) Truncated
record. (c) Assumed repeats exactly match the input
signal. (d) The spectrum resulting from (c). [from
Turner, J. D. (1988) with permission of Springer-Verlag,
copyright 1988].
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(a)

(b)

(c)

Am-lq tu,je

(d)

Figure 5-5. Not Periodic Signal. Input signal not
periodic within time record, and resulting assumed input
is distorted. (a) The signal. (b) Truncated record.
(c) Assumed repeats do not match the input signal. (d)
Distorted spectrum resulting from (c). [from Turner, J.
D. (1988) with permission of Springer-Verlag, copyright
1988].
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(a)

(b)
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(e)

Frequency Frequency

Figure 5-6. Windowing. The effect of windowing a
continuous signal. (a) The signal. (b) Assumed repeat.
(c) Window function. (d) Assumed repeat, windowed data.
(e) Spectra obtained from a sine curve not periodic
within the record without the window. (f) Spectra with
Hanning window function. [from Turner, J. D. (1988) with
permission of Springer-Verlag, copyright 1988].
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VI. GEOMETRIC AND TOPOLOGICAL METHODS OF CHAOS

A. PURPOSE AND INTRODUCTION

The previous two chapters discussed the state-of-the-

art in the flight test data analysis. The purpose of

this chapter is to discuss some aspects of the geometric

and topological methods of chaos. Chaos is present only

in some nonlinear dynamical systems.

A non-linear dynamical system may be classified as

deterministic or non-deterministic. A deterministic

system is described by a finite number of equation(s)

with known parameters and initial conditions. The

response of such a system is predictable. A periodic

system is a type of a deterministic system whose motion

can be described by harmonic functions.

A deterministic system may be sensitive to small

changes in initial conditions. Such a system is defined

as chaotic. Chaotic motion may appear random.

A non-deterministic system can be describel only in

probabilistic terms. Such a system possesses equations

those terms vary randomly. In a purely random system,

amplitude is independent of frequency. The Fr,-rier power

spectrum appears continuous. (Ref 6.1]

Differentiating between chaotic and random responses

from an experimental observation is difficult. In
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general, the following approaches may lead to evidence of

chaos in nonlinear dynamical systems [Ref 6.1].

Make an observation of the time history of the

signal.

Compute the Fourier spectrum of s.gnal.

Construct and observe the phase plane and phase space

portrait.

Construct the Poincare section of the signal.

Compute Lyapunov Exponents.

Compute Fractal Dimension.

In the following discussions, four examples are selected

to illustrate the above approaches. A lucid exposition

of chaos is presented in Crutchfield [Ref 6.21.

B. ILLUSTRATIVE EXAMPLES

Four examples, each increasingly more complex in

dynamics, will illustrate various aspects of each

approach. The first simple example, referred to in this

report as the "32 Hertz" example, is a sinusoidal signal

given by the following formula:

1 1+ .5 i(32t) (6.1)

Figure 6-1(a) presents a portion of this signal. This

example closely models the 4P vertical vibration in a

four bladed helicopter.
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The next example, referred here as the "Harmons"

example, consists of a signal obtained by summing twelve

sinusoidals together given by the following formula:

1 2
f ( f ) = 1 + - l i l t + ,)( 6 . 2 )

The sinusoidals are harmonics of each other with the

first harmonic at 8 Hertz, the second at 16 Hertz, the

third at 24 Hertz, and so on, to the twelfth at 96 Hertz.

Table 6-1 gives the amplitude, frequency and phase of

each component. Figure 6-1(b) graphs a portion of this

signal. This example closely models the output from many

of the comprehensive helicopter analysis programs, such

as CAMRAD, RACAP, and DYSCO [Ref 2.1, 2.2 and 2.3]. This

example may also be viewed as an adaptation of the next

example. The amplitudes, phases, and frequencies in

Table 1 were computed by transforming the next example

into the frequency domain. The amplitudes and phases

were then estimated and recorded at the harmonic

frequencies.

The third example, referred here as the "Actual"

example, consists of flight test data. The data is taken

from a vertical accelerometer located under the right

pilot's seat. The conditions of flight are level flight

at 60 knots and the HHC system is turned off. Figure 6-

l(c) plots a portion of this data.
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The fourth example, referred here as the "Random"

example, consists of random noise. Figure 6-1(d) plots a

portion of this signal. The signal consists of random

noise generated by a random number generator.

Each of the examples were digitized at the rate of

1230 Hertz and 5 seconds duration of data were generated.

Hence, a total of 6150 data points were recorded for each

example. This digitizing rate and record length matched

with the data obtained from flight test.

C. TIME HISTORY

A first step in identifying chaos is to examine the

time history of the signal. A motion with no pattern or

periodicity is either chaotic or random. In Figure 6-

1(a), the 32 Hertz signal is periodic. In Figure 6-1(b),

the Harmons signal is also periodic. However, in Figure

6-1(c), the Actual signal appears not to be periodic. It

may be chaotic or random. The signal exhibits no visible

regular pattern but contains a strong 32 Hertz (4P)

component. In Figure 6-1(d), the Random, the signal

appears chaotic or random. One can only determine

whether a signal is periodic or not periodic by examining

its time history [Ref 6.3].

The subroutine TIMSER of the program CHAOS produced

Figure 6-1.
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D. FOURIER SPECTRUM

One of the clues to detecting chaos in a dynamic

system is the existence of broad band fourier spectrum.

The Fourier spectrums are very good for separating a

periodic phenomena from chaotic or random phenomena. In

Figure 6-2, parts (a) through (d) give the Fourier

spectrums for the 32 Hertz, the Harmons, the Actual, and

the Random signals, respectively. The Fourier spectrum

of the 32 Hertz and the Harmons signals are just spikes,

while a broad band spectrum is seen in the Actual and

Random signals. For periodic motion, the Fourier

spectrum shows a set of narrow spikes or lines. This

indicates the signal is a discrete set of harmonic or

sinusoidal functions. Near the onset of chaos, however,

a continuous distribution of frequencies appear [Ref

6.4]. In Figure 6-2(c), the level of this distribution

is more than two orders of magnitude above the horizontal

line representing calculation noise. In a fully chaotic

regime, the continuous spectrum may dominate the discrete

spikes. Although useful in indicating the existence of

chaos, the Fourier spectrum reveals nothing about the

structure of the phenomena. The Fourier spectrum by

itself can not distinguish between chaotic phenomena

involving a small number of degrees of freedom and random

vibrations.
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Note that a horizontal dashed line indicates the

calculation noise level. On transforming a signal from

the time domain to the frequency domain, there is a

calculation noise due to the finite precision of the

computations. The calculation noise is equal to the

output of the fourier transform above the frequencies of

the anti-aliasing filter. The anti-aliasing filter

removes all signals above a selected frequency. The

output of the Fourier transform above this frequency is

due to calculation noise. Figure 6-3 illustrates the

determination of calculation noise.

The subroutine PSD of the program CHAOS produced

Figure 6-2 and 6-3.

E. THE 2-DIMENSIONAL PHASE PLANE

Information leading to the understanding of nonlinear

dynamics may be obtained by examining the 2-dimensional

(2-D) phase plane. In the phase plane, the complete

state of knowledge about a dynamical system at a given

instant collapses to a point. At the next instant the

system dynamics change, and the point is displaced. A

moving point charts the history of the system. In the

phase plane, the coordinate axes may be selected as any

two independent quantities which best described the

dynamics of the system. In the study of vibrations, a
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classical choice is to select amplitude and velocity of

motion.

Consider the 32 Hertz example which represents the

amplitude response of the motion of a simple pendulum.

Differentiating the signal provides the velocity of

motion. The amplitude and the velocity of the pendulum

varies with time as the pendulum oscillates. Figure 6-4

presents the motion of a pendulum as represented in a

classical phase plane. The horizontal axis is the

amplitude and the vertical axis represents the velocity.

As the pendulum swings back and forth, it trades kinetic

energy for potential energy. In sketch at the top of

Figure 6-4, the pendulum has maximum potential energy.

As the pendulum swings down, the amplitude decreases

while the velocity of the mass increases. The maximum

velocity of the mass occurs when amplitude is zero. This

figure shows a succession of states, and their

corresponding representations in the phase plane, as the

pendulum swings back and forth.

Connecting the states of the pendulum in the phase

plane gives a circle which represents the motion of the

pendulum over one complete cycle. This curve

representing the mction of the pendulum is called the

"trajectory." In Figure 6-4, the pendulum is assumed to

be frictionless and will continue to oscillate

indefinitely. An important observation for periodic
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motion is that the trajectory forms a closed orbit in the

phase plane. A "limit cycle" is another name for such

closed orbits and the time taken for one orbit is the

"period" of the motion.

F. TAKENS'S THEOREM

Before examining the representations of the other

examples in the 2-D phase plane, consider another useful

technique. The construction of 2-D phase plane requires

two variables, namely, the amplitude and the velocity of

motion. In typical flight test, however, only one

vibration variable is usually measured, either the

amplitude from a strain gage or the acceleration from a

accelerometer. In both instances, the choice then is

either to differentiate the strain gage signal (once, for

velocity) or integrate the accelerometer signal (once,

for velocity and twice, to obtain amplitude).

However, integrating or differentiating a signal also

has the effect of filtering the signal. Differentiation

of a signal will amplify the high-frequency noise, and

attenuate the low frequency signal. The effect of

differentiating is illustrated by the following example.

Consider the signal given by equation (6.3)

f(t) :si1(O.11) + sinl(t) + si1(10/) (6.3)
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Differentiating the equation (6.3) gives equation (6.4):

.= .cos(0.1/) + cos(t) + l0cos(1Ot) (6.4)

Observe that differentiation attenuates the low frequency

or 0.1 Hertz signal by a factor of 10. It leaves the 1

Hertz signal unchanged, but increases the 10 Hertz signal

by a factor of 10.

Similarly, integration produces an effect opposite to

that of differentiation. It amplifies the low frequency

components of a signal while attenuates the high

frequency components.

Thus the procedure to construct phase space diagrams

is inaccurate when the data is obtained from one

experimental observation. The solution came in 1980,

when Packard et al. [Ref 6.5] conjectured and later

Takens proved [Ref 6.6] a new method where 'fake'

observables are obtained from only one observable. A

typical experimental observation consists of a time

series. A time series is an array of numbers

representing the value of the observed quantity at

regular intervals of time. Takens' method involves

displacing the time value to produce any desired number
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of more 'fake' observables. Consider the following

example:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31,

Series 2 1.40, 1.35, 1.32, 1.28, 1.31, . .

Let Series 1 be the digitized values of an observable,

say for example, the vertical acceleration under the

pilot's seat. Then, Series 2 is the 'fake' observable

formed by displacing the time series by one sample. This

displacement is referred to as "embedding time." In this

example, the embedding time was set equal to one sample.

By taking the points in Series 1 as the x-coordinate, and

the corresponding points in Series 2 as y-coordinate, a

trajectory in 2-D phase plane may be drawn. In other

words, to form a trajectory, plot successive columns of

pairs. For example, the first pair is (1.43, 1.40) and

the second pair is (1.40, 1.35). To illustrate an

embedding time of 2 samples, consider the two series:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31, . .

Series 3 1.35, 1.32, 1.28, 1.31, . .

Again, Series 1 is the observable, the same as before.

Series 3 is the new 'fake' observable with an embedding

time of 2. Use the same method to form a trajectory by
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plotting successive columns of pairs. The first pair is

(1.43, 1.35), the second is (1.40, 1.32), and so on.

This method of forming 'fake' observables and plotting is

called the "pseudo phase plane" method [Ref 6.6].

Mathematically, this process may be described as:

(.r(t), x(t - E)) or (x(), .r(t + E)) (6.5)

where:

x(t) is the measured variable

E is the embedding time

t is the sampling time

An important parameter, then, is the embedding time

and it depends to a large extent on the system dynamics.

Useful hints in the selection of this parameter is

discussed later.

Takens shows that a closed trajectory in a classical

phase plane will also be closed in pseudo phase plane.

Similarly, trajectories that show certain structure and

shape in the classical phase plane show similar

characteristics in pseudo phase plane. Chaotic

trajectories in one look chaotic in the other. The

principal advantage of Takens method is that a single

observable is adequate to construct the pseudo phase

portrait that can capture the system dynamics, and
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eliminate the need for differentiation or integration of

the observed signal. Furthermore, Takens proved that any

representative quantity such a amplitude, velocity,

acceleration, etc. may be plotted in the pseudo phase

plane to study the behavior of a given nonlinear dynamic

system.

G. 2-D PHASE PLANE AGAIN

Now consider the four examples described earlier and

apply the pseudo phase plane method. To illustrate the

effects of embedding time, three different choices of

embedding times are used. The horizontal axis is the

observable and the vertical axis is the first 'fake'

observable. Figures 6-5(a), (b) and (c) depicts the 32

Hertz example for embedding times of 1, 10 and 19

samples, respectively. Figure 6-5(b) looks similar to

Figure 6-4, the classical phase plane.

Figures 6-6(a), (b) and (c) represents the Harmons

signal. A periodic signal is known to yield a closed

orbit in the phase plane. Further, the orbit seems to

cross over itself at several points.

Figures 6-7(a), (b) and (c) shows the Actual signal.

The trajectory forms orbits which never repeat or close.

The accelerometer data writes on top of itself to form a

tangle of trajectories. The 2-D phase plane portrait
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appears inadequate to discern all of the relevant

information.

Figures 6-8(a), (b) and (c) represents the Random

signal. Regardless of the embedding times, the

trajectories are seen to fill the phase plane completely.

The subroutine PPLANE of the program CHAOS produced

Figures 6-5 to 6-8.

H. EMBEDDING TIME

The issue regarding an appropriate choice for

embedding time is addressed here. A too small embedding

time, 'E', yields a phase portrait that is stretched out

along the line x = y. A too large embedding time, in the

case of a signal with a predominant frequency, yields a

phase portrait stretched out along the line x = -y. One

should compare several embedding times before settling on

any particular choice of embedding time. This choice

appears to be about one-quarter of the period of the most

predominant frequency of the observable. In the

preceding examples, 10 samples for embedding time is

selected (sampling rate of 1230 Hertz, predominant

frequency of 32 Hertz).

I. ENERGY IN THE PHASE PLANE

The phase plane constitutes a geometric method that

provides a direct visual indication of the vibratory
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energy in a signal. The greater the distance between the

trajectory and the origin of the phase plane, the greater

the magnitude of vibrations. With appropriate scaling,

the area enclosed by the trajectories in the phase plane

is a measure of the energy in the signal. This measure

of energy is the same as the variance in the time domain

or the area under the Power Spectral Density plot in the

frequency domain.

J. 3-DIMENSIONAL PHASE SPACE

There are two ways of constructing a 3-dimensional

(3-D) phase space. The first method is an extension of

the pseudo phase space method, which is illustrated by

the following example:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31, .

Series 2 1.35, 1.32, 1.28, 1.31, . . .

Series 3 1.28, 1.31, .

Series 1 is the observable, while Series 2 is a 'fake'

observable formed by displacing the timp series by two

samples. The embedding time is, in this examp2e, equal

to two samples. Series 3 is a fake observable by

displacing the second series by two samples. The data

points in the three series yield the coordinates along 3

axes. To form a trajectory in 3-D phase space plot
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successive columns of triples. In this exa-ple, the

first triple is (1.43, 1.35, 1.28). Takens' method may

be extended for any number of dimensions of pseudo phase

space.

Mathematically, this process may be represented as:

(r~f, x( 2["),- - -,xt - (mn -I 1E)) or

(. h,.7.(t 1- l +,- 2 1- .),... . + (,, - lP))

(6.6)

where 'n' is the number of embedding dimensions.

Figures 6-9, parts (a) through (d) presents the four

examples. The subroutine PSPACE of the program CHAOS was

used to produce this graph. The 32 Hertz signal in 3-D

phase space is similar to that in the 2-D phase plane.

The Harmons signal trajectories now form orbits which do

not cross as in the 2-D phase plane. This example shows

that in general, the effect of a higher dimensional

pseudo phase space is to untangle the trajectories. The

trajectories of the Actual signal form a small loop like

shape. This is known as an "attractor." The

trajectories are attracted to a small bounded space whose

volume is small in comparison to the volume of the entire

phase space. Although, the exact location of the a

trajectory is unpredictable, it remains within the

attractor. The Random signal is seen to fill up the
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entire phase space. Further, for the 32 Hertz and

Harmons signal, the orbits depicted are also attractors

whose volume is very small.

An attractor is what the behavior of a bounded

dissipative system settles down to, or is attracted to.

A system may have several attractors. For example,

consider an old fashioned grandfather pendulum clock.

The clock pendulum has two attractors. Small

displacements of the pendulum from its initial rest

position will result in a return to rest position. This

rest position is a "point attractor." However, with

large displacements the clock begins to tick as the

pendulum executes a stable oscillation or a "limit cycle"

which is the other attractor.

In the case of a pendulum clock example, different

initial conditions asymptotically approach to different

attractors. The set of initial conditions or points in

phase space that evolve to an attractor is its "basin of

attraction." Small displacements form one basin of

attraction while large displacements form another basin

in case of the pendulum clock [Ref 6.7].

K. POINCARE SECTION

Before discussing a second way of constructing a 3-D

phase space, consider the concept of a Poincare section

(PS). One method to construct a PS is by positioning a
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2-dimensional surface in a 3-D phase space and observing

the points where the trajectory pierces this surface.

The PS takes a slice through the attractor, revealing the

internal structure at this location. For given

attractor, an infinite number of PS are possible, since

an infinite number of locations and orientations on the

attractor are available. An important question in

constructing a PS is its location on the attractor.

In Figure 6-9(a), a 2-D plane is constructed for the

32 Hertz signal in 3-D phase space. This 2-D surface is

an example of a PS. Figure 6-10, parts (a) through (d)

are PS of the previous figure, all at the same location

as in Figure 6-9(a). The subroutine PCARE2 of the

program CHAOS generated the graphs in Figure 6-10.

Observe tnat a periodic signal yields only one point on

the PS and a signal with many harmonic components

produces a finite number of points in a PS. The Actual

signal produces intersections that are bounded to a small

area while the Random signal intersections fill the

entire PS plane.

This figure also illustrates another point. The

points on the PS are the intersection of the trajectories

with the plane, going in the same direction. The choice

of the direction of the trajectories is yet another

option available to the investigator in constructing the

PS.

76



A well defined bounded attractor on a PS is a

distinct indication of the presence of chaos. The

structure of the attractor reveals the characteristics of

system's nonlinear dynamics [Ref 6.1].

L. TOROIDAL PHASE SPACE

Now consider another method of constructing a 3-D

phase space. To distinguish this approach from the

pseudo phase space method, this method is referred to as

the "Toroidal Phase Space" or "Torus" method. As the

first step of construction, consider Figure 6-11(a) which

shows the 32 Hertz signal with an embedding time of 10

samples. The time is recognized as the third axis,

instead of the third 'fake' observable used in 3-D pseudo

phase space. The trajectory is seen to wrap around the

surface of a horizontal cylinder. Each wrap takes the

same interval of time, namely, 1/32 second. This time

interval is the "Period" of the trajectory. Figure 6-

11(a) presents a small duration of the 32 Hertz signal.

In Figure 6-11(b), the time axis is bent around to

form a closed cylinder, or a torus. One revolution

around the torus plots the entire 5 seconds of the 32

Hertz signal. A second closed circle inside the

trajectories is an axis line and it represents the point

of no vibration. The labeling of azimuth position about
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the torus is similar to the labeling of helicopter rotor

blade azimuth position.

Speeding up the rate of plotting the trajectories

results in figure 6-11(c). One trip around the torus now

takes exactly 1/32 second. This rate of plotting results

in the trajectories retracing themselves. In this case,

the trajectories revisit the exact same space, called an

attractor.

Figure 6-11 introduces a new parameter - the rate at

which to plot around the torus. This parameter is not

available in 3-D pseudo-phase-space. Classically, the

plotting rate is fixed at a constant rate. A new

concept, introduced here, is to synchronized the plotting

rate with that of the forcing function, in this case the

helicopter rotor. When the rate of plotting is

synchronized with the rotor, the resulting trajectories

are in the "Rotor time domain" while plotting the

trajectories at a constant rate results in the "Clock

time domain."

Figure 6-12 depicts the four examples. The plotting

rate in parts (a), (b) and (d) is 1/32 second for one

revolution around the torus, or 32 Hertz. In part (c),

the plotting rate is in the rotor time domain and the

plotting rate is exactly four times around the torus for

each rotor revolution. The embedding time is selected as

10 samples in all the cases. The 32 Hertz signal results
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in a single line attractor. The Harmons signal

appearance is similar to its appearance in 3-D phase

space. The Actual signal yields an attractor. The

Random signal appears to fill the torus.

The subroutine TORUS in program CHAOS was developed

for the analysis described and it produced Figure 6-12.

M. POINCARE SECTIONS AGAIN

A plane is shown in the Figure 6-12(a), the 32 Hertz

example in toroidal phase space. This 2-D surface is

another example of a Poincare section (PS). The

orientation of the 2-D plane is now fixed to pass through

the vertical axis of --he torus. A PS now corresponds to

strobing the data at a specific azimuth angle and

plotting the points where the trajectory pierces this

section. The azimuth angle at which to take the PS is a

parameter that must be selected.

Figure 6-13, parts (a) through (d) presents the PS of

the previous figure taken at an azimuth angle of 270

degrees.

The subroutine PCARE of the program CHAOS was

developed to obtain the Poincare sections.

N. VAN DER POL PLANE

Several PS taken at different azimuth angles of the

torus reveal the internal structure of an attractor.
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Rather than constructing an infinite number of PS, the

"Van der Pol" plane captures the internal structure in a

single plane. Figure 6-14 presents the Van der Pol

construction [Ref 6.8]. This process is equivalent to

untwisting the trajectories on the 2-D phase plane at a

prescribed rate. Mathematically, the Van der Pol plane

is computed by the following transformation:

U .cus(ct)- ( t(6.7)

where:

'X' and 'Y' are the coordinates of a trajectory in

the 2-D phase plane.

'U' and 'V' are the coordinates of a trajectory in

the Van der Pol plane.

'w' is the rate of untwisting.

The rate of untwisting is similar in nature to the

plotting rate around the torus. The untwisting rate may

either be at a constant rate or at a rate synchronized

with that of the rotor.

The Van der Pol plane method works only for signals

with a single predominant frequency. Three of the

examples have a strong 32 Hertz component.
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Figure 6-15 presents the four examples plotted in the

Van der Pol plane. Subroutine VDP of the program CHAOS

was developed to produce this transformation.

0. HIGHER DIMENSIONAL POINCARE SECTIONS

Takens shows that there is no limitation on the

number of fake observables available from a given time

history. To generate a 3-D Poincare section (PS) from a

4-D hyperspace, consider the following series of data:

Series 1 1.43, 1.40, 1.35, 1.32, 1.28, 1.31, .

Series 2 1.40, 1.35, 1.32, 1.28, 1.31, .

Series 3 1.35, 1.32, 1.28, 1.31, .

Series 4 1.32, 1.28, 1.31, .

Again, the first series is the observable, while the

second, the third, and the fourth series are fake

observables formed by displacing the time series by an

embedding time of one sample. The data in the four

series provide the four coordinates in the 4-D

hyperspace. These are referred to as "time delay

coordinates." A column represents a point in 4-D

hyperspace. To generate a PS, select a coordinate axis

(say, series 3) and a coordinate (say, 1.28). Then

Series 3 is scanned to yield all the points that equal

1.28 (interpolating Series 3 as required). A PS is then,
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a plot in 3-D space of the respective triples of the

points for Series 3 equal to 1.28. One such triple is

(1.35, 1.32, 1.31). Thus, additional parameters for

investigation are the choice of coordinate axis and the

desired value for the PS.

Figure 6-16 shows the 3-D PS for the 32 Hertz,

Harmons, Actual and Random signals, respectively. The

results are similar to the earlier PS. Subroutine PCARE3

of program CHAOS was developed for this higher

dimensional PS.

P. LYAPUNOV EXPONENTS

The geometric and topological methods discussed thus

far are mainly qualitative in nature. One of the

quantitative tests available is to compute the "Lyapunov

Exponents" of the system. A Lyapunov exponent measures

the exponential attraction or separation, over long

periods of time, of two adjacent trajectories in phase

space with different initial conditions. The Lyapunov

exponent may be defined as:

d(t) = d'2t (6.8)

or

L = log, (6.9)
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where:

'd' is the initial distance between the two

trajectories.

'd(t)' is the distance between them at a later time.

'L' is the Lyapunov exponent.

Note that the logarithm is in base 2, and hence 'L' is in

units of bits/sec.

A positive exponent means the later distance, 'd(t)',

will be larger than the initial distance, 'd'. A zero

exponent indicates that there is no change and a negative

exponent indicates that 'd(t)' is smaller than 'd'.

Figure 6-17 illustrates these concepts.

Alternatively, the exponent gives a measure of the

rate of information lost by the signal over an extended

periods of time in terms of bits of information per

second. Further, a positive exponent is yet another

indication of inherent unpredictability and resulting

chaotic behavior in the system.

Algorithms are available to calculate these exponents

from the measurement of a single observable by

constructing a pseudo phase space. The method used here

is due to Wolf, el al. [Ref 6.9]. Other methods, but not

used here, are due to Eckermann, el al. [Ref 6.10] and

Tongue and Smith [Ref 6.11], among others.
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The individual exponent calculations vary widely

depending upon the point in the data record from where

the initial distance, 'd', is measured. Figure 6-18,

produced by subroutine LAP of the program CHAOS,

illustrates how the exponent calculation varies with the

initial point. The example used here is the Actual

signal. A new exponent was estimated at intervals of

every 50 data samples. Figure 6-18 plots over 300

estimates (50 samples x 300 estimates = 6000 total data

points). Figure 6-19 shows the evolution of the average

Lyapunov exponent from these estimates. The asymptotic

value of 0.5 is obtained for the averaged exponent.

The averaged Lyapunov exponents for the four examples

calculated by Wolf's method are given below:

32 Hertz signal - 0.03 bits/sec

Harmons signal - 0.05 bits/sec

Actual signal 0.3 to 1.7 bits/sec

Random signal + 0.3 bits/sec

The Lyapunov exponent calculation varied considerably for

the Actual signal. Small changes in input parameters

result in large changes in the final averaged exponent.

Periodic attractors, such as the 32 Hertz and Harmons

examples, have only negative or zero exponents. This

indicates that their motion is predictable. Furthermore,
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changes in input parameters had little effect on the

final exponent estimate.

An equal number of trajectories diverge and converge

in a random process. The Random signal should have an

averaged exponent near zero, even though a random process

is unpredictable. The small positive exponent seen here

may be a result of the limited data file (6150 points)

used in the calculation. Changes in the input parameters

had little effect on the exponent estimate.

Finally, 1-D systems have only a single Lyapunov

exponent, while 2-D systems have two Lyapunov exponents,

and so on.

Q. STRANGE ATTRACTORS

Consider the case of a 3-D system with one positive

Lyapunov exponent and the rest being zero or negative.

The system is also considered as being dissipative. A

dissipative system is any system, such as a helicopter,

which loses energy with time due to friction and other

nonconservative forces. These systems stay in motion by

receiving energy from an outside source. In the case of

a helicopter, this energy is obtained from the rotor.

Study Figure 6-20 closely. The multidimensional

attractors describing dissipative systems become

effectively one-dimensional. In dissipative systems, the

attractors have bounded-volumes that shrink with time.
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Although the volumes always shrink, the distance between

neighboring trajectories may shrink or expand at

different rates in different directions. The Lyapunov

exponents describe this rate of shrinking or stretching.

The direction of expansion defines a one-dimensional line

that contains the attractor. The attractor shrinks in

some directions and grows in others. This exponential

growth is a local feature because the physical system is

bounded. Hence, two trajectories on a chaotic attractor

cannot diverge exponentially forever. Consequently the

phase space in the attractor folds over onto itself. So,

although the trajectories follow increasingly different

paths, they eventually must pass close to one another

again. Then the attractor, while thin, becomes complex

in nature. The process of stretching and folding repeats

itself, creating folds within folds. Attractors with

this structure are called as "strange attractors."

Figure 6-20 sketches the formation of a strange

attractor.

In 3-D phase space, a strange attractor appears like

a collecticn of infinite number of sheets or parallel

surfaces. The separation of the surfaces is by distances

that approach the infinitesimal. The appearance of a

strange attractor in a Poincare section is a CERTAIN sign

of chaos. When examined on a smaller scale, a strange

attractor has a self similar structure. In other words,
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magnifying any small part of the Poincare section reveals

even more sheet like layers. In order to characterize

such Poincare patterns, the term "fractal" is used [Ref

6.12].

However, finding strange attractors in actual

experimental data is extremely difficult. In all but the

simplest systems, the stretching and folding of phase

space occurs in many directions. This interference makes

observation of a strange attractor difficult in an

experimental signal [Ref 6.13 and 6.14].

R. FRACTAL DIMENSION

Another quantitative measure of chaos is to compute a

"fractal dimension," if it exists. The fractal dimension

gives a the lower bound on the number of essential

variables needed to model a systems dynamics. For

example, if the fractal dimension is ,say, 6.5 for some

system, then the minimum number of first-order

differential equations required to simulate the dynamics

of this system is 7. Furthermore, non-integer values for

fractal dimension indicate the existence of a strange

attractor, Berge [Ref 6.15].

There are at least six different ways to classify the

nature of fractal dimension. The dimension discussed

here is known as "correlation dimension". For further

discussion on the different types of dimension, see for
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example, J. D. Farmer, et al. [Ref 6.16]. Other ielevant

works are Malraison, et al. [Ref 6.17] and Froehling, et

al. [Ref 6.18]. The correlation fractal dimension, 'd',

is defined by the following equation:

( * ( (6. 10)

where:

'C(r)' is the probability of the attractor within a

circle, sphere or hypersphere of radius /r'.

'r' is the radius of a circle, sphere or hypersphere.

'd' is the fractal dimension.

Take the natural logarithm of both sides of equation 6.10

to solve for 'd':

,1 : i~l (6.11)

Following Grassberger and Procacia [Ref 6.19], a

procedure to compute the correlation dimension is

described. Consider Figures 6-21, the 32 Hertz signal in

the 2-D phase plane. Remember this signal was digitized.

Start with a point on the attractor and calculate the

number of points inside a circle of radius 'r'.

Calculate the probability 'C(r)' by dividing this rumnber

of points by the total number of points that rake up the
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attractor. Repeat this procedure for several points

along the attractor. Then compute 'C(r)' for several

values of 'r'. The slope of the log (C(r)) versus log

(r) curve gives the correlation dimension 'd'. The

validity of this power law is limited to values of 'r'

reasonably small compared to the size of the attractor.

In the 32 Hertz example, the dependence is linear and

hence 'd' is equal to 1.

To obtain the fractal dimension of the attractor, the

procedure has to be applied in 2-D, 3-D, 4-D, etc. pseudo

phase space. The asymptotic value of the correlation

dimension is the fractal dimension of the attractor.

This procedure is given by:

C(7" lin ) f] - X, -xh) (6. 12)

where:

'H' is the Heavside step function.

'jx - xj I' is the Euclidian distance between the

roints.

and 'N' is the total number of points.

Figure 6-22 summaries the results for the four

examples. The fractal dimension, 'd', for the 32 Hertz

signal remains at 1 regardless of the dimension of the

phase space. In contrast, the fractal dimension of the
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Random signal roughly remains equal to the dimension of

the phase space. The Random signal can be considered to

be the superposition of an infinite number of independent

oscillators. Their trajectories will densely cover any

higher dimensional phase space.

As long as the fractal dimension is roughly equal to

the dimension of the phase space used for the

calculation, the attractor lies in a higher dimensional

phase space. On the other hand, once the fractal

dimension is independent of the dimension of the phase

space used for the calculation and is non-integer, the

signal is characterized as chaotic and accompanied by a

strange attractor [Ref 6.15] & [Ref 6.19].

The subroutine COD of the program CHAOS was developed

to compute the fractal dimension discussed here and

produced Figure 6-21 and the results of Figure 6-22.

S. SUMMARY

In this chapter, geometric and topological methods of

Chaos are described. Determination of the presence of

Chaos from the analysis of a times series alone is

difficult. No single approach provides a conclusive

evidence of chaos. They all must be used together, each

providing evidence to suggest the presence of Chaos.
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Table. 6.1

Coefficients Used for Harmons Example (Equation 6.2)

i aA w

1 0.014 8.0 345
2 0.014 16.0 255
3 0.009 24.0 076
4 0.228 32.0 296
5 0.025 40.0 033
6 0.017 48.0 014
7 0.025 56.0 034
8 0.044 64.0 225
9 0.G13 72.0 352

10 0.011 80.0 195

il 0.012 88.0 187
a2 0.020 96.0 106

Note: a, is in units of "g's"

wL is in units of hertz

and 8Z is in units of degrees.
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Figure 6-1. Time Histories. The time histories of
the four examples used throughout this chapter. (a) 32
hertz. (b) Harmons. (c) Actual. (d) Random.
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line indicates instrument and calculation noise. Units
of part (c) is in "g's squared. Transformation used

4096 points and a Hamming window.
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Figure 6-3. Determination of Calculation Noise.
Fourier spectrum for Actual example. The anti-alaising
filter removed all signals above the frequency of 250
hertz. Calculation noise is equal to the output of the
fourier transform above 250 hertz.
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Figure 6-4. 2-Dimensional Phase Plane Portrait of a
Pendulum. The horizontal axis plots amplitude and the
vertical axis plots velocity of the pendulum's swinging.
One point on this plane contains all the information
about the state of the pendulum at any instant of time.
Connecting the points yields a smooth circle which
represents trajectory of the pendulum. This pendulum is
frictionless.
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Figure 6-5. Pseudo-phase-plane representation of 32
hertz example. Presented for three different choices of
embedding time. (a) 1 sample. (b) 10 samples. (C) 19
samples. Part (b) looks just like figure 6-4.
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Figure 6-6. Pseudo-phase-plane representation of
Harmons example. Presented for three different choices
of embedding time. (a) 1 sample. (b) 10 samples. (c)
19 samples.
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Figure 6-7. Pseudo-phase-plane representation of
Actual example. Presented for three different choices of
embedding time. (a) 1 sample. (b) 10 samples. (c) 19
samples.
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Figure 6-8. Pseudo-phase-plane representation of
Random example. Presented for three different choices of
embedding time. (a) 1 sample. (b) 10 samples. (c) 19
samples.
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Figure 6-9. 3-Dimensional Phase Space. (a) 32
hertz. (b) Harmons. (c) Actual. (d) Random. Embedding
time is 10 and 20 samples for axis labeled F(T-10) and
F(T-20) respectfully. The construction of a Poincare
section is illustrated in part (a). The section consists
of those points where the trajectory pierces the plane in
the same sense (direction).

100



(a) 4-A'E N C- ( b ) P) .CARE S , 'T4 OF ?- SPAC

2 1,

d)L P j( ) AnF F . ti ;A

\- L / -.- ~ -- - iP A P S IF

Figure 6-10 Poincare Sections of 3-D Phase Space.
Poincare sections of the examples presented in Figure 6-
8. (a) 32 hertz. (b) Harmons. (c) Actual. (d) Random.
Section taken at F(T-20) equal to 1.0. Plotted are only
intersections of trajectories traveling upward.
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Figure 6-11. Construction of Toroidal Phase Space.
(a) The time series representation of the 32 hertz
example. The trajectory wraps around an apparent
cylinder. The cylinder is not a feature, but just a step
in the graphical construction. Part (a) plots only a
portion of the five seconds of data. (b) Connecting the
ends of the cylinder forms toroidal phase space. The
entire data record presented here. (c) Speeding up the
rate of plotting gives an attractor. The trajectories
retrace themselves, over and over.
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(a) 

Figure 6-14. Construction of the Van der Vol plane.
(a) The Actual signal plotted in toroidal phase space
with plotting rate synchronized with the rotor. (b)
Poincare sections taken at 180, 270 and 0 degrees
azimuth. (c) Poincare sections rotated; the 180 degree
azimuth section is not rotated, the 270 degree azimuth
section rotated 90 degrees, the 0 degrees azimuth section
rotated 180 degrees. (d) Sections combined to form Van
der Po1 plane.
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untwisting is 32 hertz for parts (a), (b) and (d).
Synchronized with rotor for part (c). Embedding time is
10 samples.
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(c) (d)

Figre6-1. -D oicae Sctonsof4-

Figu a rey 6(-) 16 3- vonarue Setin of0 Embddigtm

is 10 and 20 samples. (a) 32 hertz. (b) Harmons. (c)
Actual. (d) Random.
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Figure 6-17. Lyapunov Exponents. Sketch of the
change in distance between two nearby orbits used to
define the largest Lyapunov exponent.
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Figure 6-18. Instantaneous Lyapunov exponent for
the Actual Signal. The horizontal axis, Propagation
Time, refers to the position in the data record of the
initial point. Conditions were level flight, 60 knots
and HHC off.
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Figure 6-19. Average Lyapunov exponent for figure
6-18. Plot shows running average of instantaneous
Lyapunov exponent.
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Figure 6-20. Formation of a Strange Attractor.
Start with a disk which represents trajectories very
close to each other. The trajectories are traveling in
the 'y' direction. They diverge chaotically in the 'z'
direction, but converge in the 'x' direction. The 2-D
disk collapses to a 1-D line. Since the system is
bounded, the trajectories can not diverge exponentially
forever in the 'y' direction. They fold over. This
folding process continues resulting in the formation of
an strange attractor as shown on the right.
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Figure 6-21. Computation of Fractal (correlation)
Dimension. 32 hertz signal used as an example. (a) Draw
a circle of radius 'r', centered about an arbitrary point
on the attractor. Remember the signal was digitized.
Determine number of digitized points inside the circle.
Call this number "correlation." (b) Repeat for many
radius and for many arbitrary points. Plot log
correlation versus log radius. Slope is fractal
dimension. In this case, 1.
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Dependence of Fractal Dimension on
Phase Space Dimension

Computed Correlation Fractal Dimension
12

-B Random

-+-Actual /
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Figure 6-22. Fractal Dimension. Plot of fractal
dimension versus dimension of phase space. Results fur
the 32 hertz, Harmons, Actual, and Random sample
presented.
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VII. NATURE OF THE HHC CONTROLLER TRANSFER MATRIX

A. PURPOSE

This chapter shows how the transfer matrix in the HHC

control law is either linear and repeatable or non-linear

and non-repeatable depending on how vibrations are

defined.

B. TRANSFER MATRIX

The HHC control law from the third chapter is

repeated here:

-+ Tz (3.2)

All closed loop controlled HHC wind tunnel and flight

tests to date have used this control law. The question

unanswered by present research is whether the transfer

matrix, 'T', is either linear or nonlinear. Also,

whether it is either repeatable or non-repeatable.

'T' is repeatable if thp values for all 36 elements

of the matrix remain the same each time they are measured

under similar flight conditions. It is non-repeatable if

the 36 elements of the matrix change significantly each

time an estimate is made for the matrix, even though test

flight conditions, such as airspeed, do not change.
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If 'T' is repeatable, then the question remains

whether it may be treated as linear or non-linear. 'T'

is linear if small changes in test conditions result in

small changes in the values of its elements. For

example, if 'T' is linear, the values of 'T' measured at

70 knots should lie between the values of 'T' measured at

60 and 80 knots.

The 'z' and 'z0 ' vectors have six elements each.

These elements represent the cosine and sine components

of lateral, vertical and longitudinal accelerations at a

single frequency and are in units of "g's". These

vectors represent vibrations at a specific location on

the helicopter. For the OH-6A, the frequency was at 32

hertz and the location was underneath the pilot's seat.

The 36 elements of the 'T' matrix relate swashplate

excitation to the resulting helicopter vibration. Each

element in the 'T' matrix is in units of the 'z' vector

divided by units of the 'u' vector. In the case of the

OH-6A, the units for the 'T' matrix were "g's/inches".

C. SIGNIFICANCE OF POINCARE SECTION AND VAN DER POL

PLANE

A qualitative relationship exists between the 'Cz

vectors and trajectories drawn in toroidal phase space.

To visualize this, vertical vibrations are considered.

The trajectory of vertical vibration is drawn in toroidal
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phase space with the plotting rate at the 'z' vector

frequency, namely 32 hertz. The single attractor

obtained represents two vertical vibration elements of

the 'z' vectors. Taking a Poincare section (PS), or

forming a Van der Pol (VDP) plane from this attractor

reveals details of the relationship. With appropriate

scaling, the horizontal location of the attractor in

either the PS or VDP plane gives the cosine part of the

vertical vibration. The vertical location of the

attractor, again with appropriate scaling, is identified

as the sine part of vertical vibration. Further, in both

the PS and the VDP plane, amplitude of vibration is the

distance from the origin to the location of the

attractor. Phase is given by the angular measure from an

arbitrary axis.

Three PS or VDP planes, one each for lateral,

vertical and longitudinal vibration respectively,

describes the 'z' vectors fully. With HHC off, the PS or

VDP plane represents the 'zo' vector, or the baseline

response. With HHC on, the PS or VDP plane represents

the 'z' vector, or the new system response.

The HHC control law assumes a linear static transfer

relationship (matrix 'T') between the commanded

swashplate movement (vector 'u') and the fuselage

vibrations (vectors 'z'). If the 'z' vectors are linear

and repeatable then the 'T' matrix is linear and
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repeatable owing to this linear relationship in the

control law. If the 'z' vectors are non-linear and non-

repeatable, then the 'T' matrix is non-linear and non-

repeatable. For given test data and flight conditions,

the nature of the 'T' matrix can be deduced from the

nature of 'z' and 'zo' vectors.

D. COMPARISON OF TWO METHODS OF PLOTTING

Consider the effects of two methods of plotting about

the torus. The plotting rate may either be at a constant

rate or at a rate synchronized with that of the rotor of

the helicopter. Figure 7-1 illustrates these two methods

of plotting using a vertical acceleration signal from

under the pilot's seat at an airspeed of 60 knots and

with the HHC system off. Plotting about the torus is at

a fixed frequency of 32.36 Hertz in part (a). This

method is referred to as plotting in the "clock time

domain."

Plotting is synchronized with the main rotor in part

(b). In part (b), the trajectory goes exactly 4 times

around the torus for each revolution of the helicopter

rotor. The second method is referred to as plotting in

the "rotor time domain" and the plotting rate in this

case is 4P.

Figure 7-2 presents the PS of Figure 7-1 at 270

degrees azimuth. The location of this PS is shown in
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Figure 7-1(b). The novel method of presentation shown in

Figure 7-2 is believed to be new. The number '0' marks

the first half seconds duration of trajectories which

intersect the PS. The number 'I' marks the next half

seconds duration of intersections, the number '2' the

next half seconds duration, and so on - through to the

number '9'. Plotting at a fixed 32.36 Hertz rate, part

(a), causes the trajectories to first intersect the PS

near the positive x axis. They then move toward the

negative y axis and then pass by the negative x axis and

end finally near the positive y axis. Plotting at a 4P

rate, part (b), causes all of the trajectories to

intersect the PS near the positive x axis. Observe that

the trajectories form a well defined attractor when

plotting in the "rotor time domain."

In order to interpret the data in Figures 7-1 and 7-2

refer to the Figure 4-3. This figure presents the main

rotor rpm for the same flight test point. The rotational

rate of the main rotor varies by an average of 1 to 2 %.

This slight variation in rotor rotational rate accounts

for the difference in the two presentations. (Note: The

main rotor azimuth pipper was used to synchronize the

plots to the rotor time domain. Main rotor rpm was not

used due to large amounts of quantization errors in that

signal.)
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Figure 7-3 and 7-4 present the lateral and

longitudinal vibrations under the pilot's seat using both

methods of plotting. They look similar to Figures 7-1

and 7-2.

E. IMPLICATIONS

Defining the 'z' vectors in the rotor time domain

results in a vector whose elements (sine and cosine

components) remain unchanged at one condition of flight.

The 'T' matrix, then, is predictable and steady. In

contrast defining the 'z' vectors at a fixed frequency

(clock time domain) yields unpredictably in elements that

change with time. The 'T' matrix, then, is

unpredictable, even though conditions of flight do not

change.

Figures 7-1 through 7-4 highlight the importance of

defining the HHC control law, equation (3.1), in the

rotor time domain. From a practical standpoint, constant

rotor rpm should be carefully maintained. More

importantly, the HHC actuators MUST move in

synchronization with the main rotor. The HHC computer

must have accurate information on main rotor azimuth

position through a reliable pipper system.
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F. CONCLUSION

The next two chapters will show that the 'T' matrix

changes in a predictable and linear fashion as both HHC

controller inputs and helicopter airspeed changes. The

HHC control law transfer matrix is both linear and

repeatable if the vibrations, 'z', are defined in the

rotor time domain. This matrix is non-linear and non-

repeatable if vibrations are defined in the clock time

donain.
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(b)

Figure 7-1. Two Methods of Plotting a Signal in
Toroidal Phase Space. (a) Rate of plotting held fixed at
32.36 hertz. (b) Rate of plotting held at the 4P
frequency, as the rotor's rotational rate varies the
plotting rate varies. This is referred as plotting in
the rotor time domain. Presented is vertical
acceleration under the pilot's seat at 60 knots airspeed
with the HHC system off.
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Figure 7-2. Poincare sections of figure 7-1.
Numbers indicate when the intersection of trajectories
intersection with the Poincare plane occurred. 'Zeros'
indicate intersection in the first half second, 'Ones'
indicate in the second half second, and so on, with
'Nines' indicating the last half second. Presented is
vertical acceleration under the pilot's seat at 60 knots
airspeed with the HHC system off. Embedding time is 10
samples and section is taken at 270 degrees azimuth. (a)
32.36 hertz plotting rate. (b) 4P frequency plotting
rate.
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Figure 7-3. Lateral Acceleration. Presented is
lateral acceleration under the pilot's seat at 60 knots
airspeed with the HHC system off. Embedding time is 10
samples and Poincare section is taken at 270 degrees
azimuth. (a) Torus at 32.36 hertz plotting rate.

(b) Poincare section of (a).
(c) Torus at 4P frequency plotting rate.
(d) Poincare section of (c).

123



(b ) P(,IN( AR( SECI ON

A

3(a)(

2 5 9

6 .66 7 
e l 
1 it

? 
I

-
, 353

c5 2

,

( c 
rrnw ri

(C)(

Figure 7-4. Longitudinal Acceleration. Presented
is longitudinal acceleration under the pilot's seat at 60
knots airspeed with the HHC system off. Embedding time
is 10 samples and Poincare section is taken at 270
degrees azimuth.

(a) Torus at 32.36 hertz plotting rate.
(b) Poincare section of (a).
(c) Torus at 4P frequency plotting rate.
(d) Poincare section of (c).
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VIII. LIMITS OF HHC PERFORMANCE

A. PURPOSE

Chapter 10 demonstrates a limit exists to HHC

vibration reduction. This is attributed to the presence

of chaos. A new technique, explained in this chapter,

allows easy determination of this limit. The method

described here does not require the aircraft to be

equipped with HHC.

B. EFFECTS OF HHC

HHC attempts to reduce a measured variable, usually,

the vibrations under the pilot's seat. Figure 8-1

illustrates the effect of 0.33 degree lateral excitation

of the swashplate on the 4P vertical and lateral

vibrations under the pilot's seat. Presented are 14

flight test points for manual controller phases of 0 to

360 degrees, in 30 degree increments. The aircraft is

in steady level flight at 60 knots. This figure shows

the effect of HHC on amplitude of response vibration

only. The horizontal axis shows manual controller

phase. This is the phase of swashplate excitation

relative to rotor blade azimuth position. A zero degree

controller phase means that the swashplate tilts to the

port (left) when the four rotor blades are at 0, 90, 180
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and 270 degrees rotor azimuth respectively. A 180

degree controller phase means the swashplate tilts to

the starboard (right) when the four rotor blades are at

45, 135, 225 and 315 degree rotor azimuth respectively.

Further, 360 degrees of manual controller phase relates

only to 90 degrees of rotor azimuth. Tilting of the

swashplate occurs 4 times for each rotor revolution.

This relationship was determined by comparing main rotor

azimuth pipper information with HHC actuator position

information.

Figure 8-2 presents the Poincare sections (PS) of

the same vertical vibration data in Figure 8-1, but

plotted in toroidal phase space. The plotting rate is

at 4P; and, the PS's are at 180 degrees azimuth.

Figure 8-3 presents the Van der Pol (VDP) plane for

the vertical vibrations. The rate of untwisting is also

set at 4P. Helicopter fuselage vibrations contain a

single predominant frequency, hence the VDP method

works.

The effect of HHC is to move the attractor, in both

the PS and VDP plane, WITHOUT changing its size. The

attractor is bounded to a small volume of the phase

space. Although predictability of the trajectories

within the attractor is not possible, the overall

attractor location is fixed for each controller phase.
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As the manual controller phase changes, the attractor

shifts its position in the plane.

Minimum vibration is seen to occur at 300 degree

manual controller phase. The attractor location is

roughly centered about the origin. The distance of the

attractor from the origin of the plot is an indication

of the amplitude of vibration. The closer to the

origin, less is the vibration.

Maximum vibration is observed at 90 degrees manual

controller phase. The attractor is at the greatest

distance from the origin, indicating greater vibration.

C. PHASE DETERMINATION

One of the principal advantages of the PS and VDP

plane presentations is that they display amplitude and

phase of the response simultaneously. The distance froi

the origin gives the amplitude while the clock position

about the origin indicates the response phase.

The attractor appears to move linearly with changes

in manual controller phase in both the PS and the VDP

plane. In both representations, HHC acts as a vector

which moves the attractor from its baseline position.

This vector is referred here as the "HHC vector."

Recall that both the PS and VDP plane are constructed in

pseudo phase space. The orientation of the HHC vector

for each manual controller phase in the PS or VDP plane
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is revealed by inspection. Observing the attractor

position at several manual controller phases fixes a

coordinate axis for the HHC vector. Presented in both

Figures 8-2 and 8-3 is a "HHC coordinate axis" for this

particular aircraft. It shows the direction in which

the baseline vibration attractor will move as HHC is

applied at various controller phase angles.

Once established, the HHC coordinate axis does not

change for different flight conditions, such as airspeed

or sideslip. However, changes in embedding time will

change the orientation of the HHC coordinate axis.

Generally during all the flight tests, only one choice

of embedding time is used in the construction of the

pseudo phase space. Also the HHC coordinate axis may

change for the other two swashplate excitation modes,

namely collective and longitudinal. Flight test data

for these two modes were not available. Finally, note

that only two HHC manual controller phase data samples

are needed to fix the HHC coordinate axis for a given

aircraft for one mode of swashplate excitation.

Given the HHC coordinate axis and one baseline

vibration sample, best phase for HHC may be read

directly from the PS or VDP plane. This is a

significant feature of these methods. Only one baseline

data sample at each test condition gives the phase for

best HHC vibration reduction.
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D. LINEAR MOVEMENT OF THE ATTRACTOR AND THE TRANSFER

MATRIX

The attractor appears to move linearly with changes

in manual controller phase. For example, the position

of the attractor position at 30 degree controller phase

can be interpolated from the attractors at 0 and 60

degrees controller phase respectively. This implies

that the HHC vector movement is linear.

This linear attractor movement means that the

transfer natrix, 'T', changes little with HHC swashplate

inputs. Hence, the transfer matrix appears to be

predictable and repeatable for this aircraft.

E. LIMIT OF HHC PERFORMANCE

Consider Figures 8-4 and 8-5, which are the VDP

representations of lateral and vertical vibration at the

pilot's seat. Figure 8-6 presents the flight test

points considered. Both Figures 8-4 and 8-5 present

baseline response in the left column and HHC-On response

in the right column. The first row is vertical

vibration and the second row is lateral vibration. The

longitudinal vibration is not available because of

improper signal conditioning of that signal during the

flight test.

Figure 8-4 compares baseline with Open Loop HHC.

Note that with HHC-On, the attractors are not exactly at
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the origin of the phase plane. This implies that the

vibration was not reduced to a minimum. The HHC moves

the attractor in the VDP plane without changing its

size.

A comparison of baseline with Closed Loop HHC is

given in Figure 8-5. Figure 8-6 shows that this is the

best reduction achieved with HHC in the entire flight

test program. The best HHC performance is with

simultaneous longitudinal, lateral and collective

swashplate excitation in an optimal combination. The

attractor is roughly centered at the origin of the phase

plane showing that the HHC system reduced the vibration

to the minimum possible. The size of the attractor

remains unchanged as compared to the baseline case.

The size of the attractors may be viewed as a limit

of HHC vibration reduction. The size appears to be

independent of improved controllers, actuators,

computers, etc. and therefore, vibration level may not

be reduced any further. In order to determine the best

HHC performance, only one sample of baseline (HHC off)

data of the measured variable is needed. In other

words, maximum vibration reduction obtainable from a

given HHC system may be known before turning on that

system or even installing it. This knowledge allows a

si -nificant reduction in the time required to determine

controller characteristics and HHC performance levels.
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This further avoids wasted resources in trying to

accomplish vibration reduction beyond the limit

indicated in baseline flight testing. Remember that

with appropriate scaling, the area enclosed by the

trajectories is a measure of the vibratory energy in a

signal.

Furthermore, since both the PS and VDP plane show

amplitude and phase of a vibration at a single

frequency, these methods can monitor the performance of

a HHC system during flight test. Unlike Fourier

analysis, these methods can be implemented real time

since all that is required is the observable and a time

delayed 'fake' observable.

F. SUMMARY

The Poincare section and Van der Pol plane methods

will reduce flight test requirements by showing limits

of HHC performance. They also allow rapid determination

of best phase for HHC controller and rapid determination

of maximum vibration reduction achievable for a given

aircraft.
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Figure 8-1. Variation of HHC Performance with
Controller Input Phase. Conditions are level flight at
60 knots with 0.33 degrees of lateral 4P excitation of
the swashplate. (from Wood et al. (1985), reprinted with
permission of author].
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Figure 8-2. Poinoare Sections for Phase Sweep of

Lateral Mode. Poincare section of toroidal phase space

with section taken at 180 degree azimuth and rate of

plotting is at 4P. Conditions are level flight at 60

knots with 0.33 degrees of lateral 4P excitation of

swashplate. The manu'al controller phase is indicated on

each section. Embedding time is 10 samples.
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Figure 8-3. Van der Pol Planes for Phase Sweep of
Lateral Mode. Conditions are level flight at 60 knots
with 0.33 degrees of lateral 4P excitation of swashplate.
The manual controller phase is indicated on each plane.
Rate of untwisting is 4P for the Van der Pol plane.
Embedding time is 10 sarples.
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Figure 8-4. Comparison of Van der Pol planes with
Open Loop Control of HHC. Conditions are level flight at
100 knots. For HHC On the conditions are 0.33 degrees of
lateral 4P excitation of swashplate at 270 degrees of
controller phase. Rate of untwisting is 4P for all Van
der Pol planes. Embedding time is 10 samples.

(a) Vertical acceleration with HHC off.
(b) Vertical acceleration with HHC on.
(c) Lateral acceleration with HHC off.
(d) Lateral acceleration with HHC on.
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(a) VAN DER POL PLANE (b) VAN DER L PLANE

(C) VAJ ()ER Pr. PLAN' (d) VAN DER PCIL PLANE

Figure 8-5. Comparison of Van der Pol planes with
Closed Loop Control of HHC. Conditions are level flight
at 100 knots. Rate of untwisting is 4P for all Van der
Pol planes. Embedding time is 10 samples.

(a) Vertical acceleration with HHC off.
(b) Vertical acceleration with HHC on.
(c) Lateral acceleration with HHC off.
(d) Lateral acceleration with HHC on.
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Figure 8-6. Flight Test Points compared in Figures
8-4 and 8-5. In Figure 8-4 comparison was with lateral
mode at 100 knots versus baseline at 100 knots. In
Figure 8-5 comparison was with closed loop B36 software
with baseline at 100 knots (drawn by McDonnell Douglas
Helicopter Company, reprinted with permission].
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IX. HHC CONTROLLERS

A. PURPOSE

A new technique to determine the minimum HHC

controller requirement for any helicopter from a few

minutes duration of flight test data is described. For

the OH-6A, a scheduled gain controller is shown adequate

for steady level flight. This new method does not need

the HHC system installed on the aircraft.

B. REVIEW ON TYPES OF CONTROL SYSTEM

The characteristics of the 'T' matrix and its changes

with flight conditions determine the minimum control

system needed for a HHC system. If the 'T' matrix is

repeatable and does not change with flight conditions,

then a fixed gain control system is seen to be adequate.

A fixed gain control system uses only one set of values

for the elements of the 'T' matrix for all flight

conditions. This system represents an open loop system

where identification of the 'T' matrix is done off line.

This is a very simple control system.

If the 'T' matrix is repeatable and linear, but

changes with flight conditions, then a scheduled gain

control system is adequate. In a scheduled gain control

system, the 'T' matrix changes as some measured variable
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such as airspeed, changes. This system results in a

closed loop with identification of the 'T' matrix being

done off line. The requirement for sensors to measure

the input variables like airspeed, sideslip, etc. make

this system more complex than the fixed gain system.

If the 'T' matrix is either non-repeatable or non-

linear, then an adaptive gain control system is required.

This system is closed loop and uses on line

identification of the 'T' matrix. The resulting control

system is the most complicated system, and sometimes

being unstable, it can easily increase vibrations instead

of decreasing them.

C. DETERMINATION OF MINIMUM CONTROLLER FROM F7iGHT TEST

The previous two chapters demonstrated that the

transfer matrix, 'T', is repeatable when measured under

similar flight conditions. Also, the matrix changes

little with changes in swashplate excitation.

Figures 9-1 and 9-2 present acceleration data

measured underneath the pilot's seat. The left column in

each figure represents vertical acceleration, while the

right column gives lateral acceleration. These figures

show baseline (HHC off) data from 60 to 100 knots at 10

knot increments. Fiure 9-1 presents the PS of the

vibration data, plotted in toroidal phase space. The

plotting rate is selected as 4P and, the PS are at 180
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degrees azimuth. Figure 9-2 presents the VDP plane for

these same vibrations. The rate of untwisting for the

VDP plane is also set at 4P.

Both of these presentations display amplitude and

phase simultaneously. Observe that as airspeed changes

from 60 knots (top row of both figures) to 100 knots

(bottom row of both figures), the amplitude and phase of

the response changes predictably and linearly.

A scheduled gain controller with only two or three

transfer matrices can accommodate the changes shown in

the response. Conversely, for changes of airspeed

limited to 20 knots, a fixed gain controller seems

adequate.

This technique was not evaluated on maneuvering

flight data, as this data was not available. Also

longitudinal vibration data was not analyzed, as signal

conditioning problems gave bad data.

D. FUTURE APPLICATION OF CHAOS METHODS ON HHC

The present method yields rapid determination of

proper HHC controller type for other helicopters. The

recommendation is to use the PS or VDP plane methods in

real time during a few minutes of maneuvering flight.

The controller type can be selected by observing the

movement of the attractor of a measured variable, such a

vertical, lateral, and longitudinal vibration. This
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method, as can be seen, does not need the HHC system to

be installed in the aircraft.

E. SUMMARY

A method is described which allows rapid

determination of proper controller type for any

helicopter. For the OH-6A, a scheduled gain controller

for HHC appears to be adequate for steady level flight.
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flight with HHC off. Rate of plotting around the
toroidal phase space is 4P and the sections are at 180
degree azimuth. Left column is vertical acceleration an-3
right column is lateral acceleration. (a) 60 knots. (L)
70 knots. (c) 80 knots. (d) 90 knots. (e) 100 knots.
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Figure 9-2. Van der Pol plane representations of
Pilot Seat Acceleration Versus Airspeed. Conditions are
level flight with HHC off. Rate of untwisting the plane
is 4P. Left column is vertical acceleration and right
column iL lateral acceleration. (a) 60 knots. (b) 70
knots. (c) 80 knots. (d) 90 knots. (e) 100 knots.
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X. THE HUNT FOR CHAOTIC HELICOPTER VIBRATIONS

A. PURPOSE

This chapter is devoted to the in-depth study of

flight test measurements obtained from the OH-6A

helicopter using the dynamical concepts described in

Chapter 6. Classical methods of analysis are also

employed. The purpose of this investigation is to

explore helicopter vibrations for chaos. Historically,

helicopter vibrations are assumed to be periodic.

Understanding the nature of helicopter vibrations may

lead to better methods of vibration reduction and better

design of vibration controllers.

Also, the classification of helicopter vibrations has

important repercussions in helicopter simulations. The

numerical simulation programs like CAMRAD and RACAP

assume that helicopter vibrations are periodic.

Finally, the effects of HHC on chaotic response, if

any, are also addressed.

B. PRELIMINARIES

1. Conditions of Flight

For the present investigation, the conditions of

flight are at 60 knots airspeed with the HHC system

turned off. This condition is the most benign of the
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available data. Higher airspeeds lead to greater

vibrations. The assumption is that if chaos exists at 60

knots, then, it certainly exists at higher airspeeds.

The OH-6A helicopter is a smooth flying helicopter even

without HHC. So, the presences of chaos in the response

of this helicopter implies chaotic response in other

helicopters which are not as smooth.

During the 5 seconds of test data recording, the

aircraft was reported to be in steady, level flight with

the controls held fixed and the air smooth.

2. Data Presented

The analysis presents the time history, the

Fourier spectrum, the attractor in toroidal phase space,

and a Poincare section of the attractor taken at 270

degrees azimuth. The plotting about the torus is

synchronized with the rotor and is at 1P. That is, the

rotor time domain is employed. The embedding time is 10

samples for the construction of pseudo phase space. A

dashed horizontal line on the Fourier spectrum indicates

calculation noise associated with the Fourier transform.

3. Analysis of Data

The first analysis step is to examine the time

histories for quantization error. An example of a signal

with large quantization error is shown in Figure 4-3. A

large quantization error leads to misleading results in
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the chaos methods. The appearance of chaos in such

signals may be attributed to the quantization error.

Examination of the Fourier spectrum is the second

step. The appearance of a broad spectrum of frequencies,

at least one order of magnitude above calculation noise,

is an indication of the presence of chaos. On the other

hand, if the Fourier spectrum shows the signal as

periodic, then there are no chaotic vibrations.

The third step is the examination of the signal

in toroidal phase space. Trajectories spread out over a

Poincare section is another indication of presence of

chaos.

4. Measurements Presented

Forty nine measurements were available for the

analysis. Appendix B lists these measurements. Although

all the measurements were examined, only a representative

sample are presented here.

C. AIRCRAFT FLIGHT TEST MEASUREMENTS

1. Blade Feathering

The aerodynamic angle of attack that a rotor

blade experiences is a result of a combination of the

blade feathering, blade flapping and rotor azimuth

position, among other parameters. Figure 10-1 presents a

sample of blade feathering data as measured by a

potentiometer. This signal also includes components of
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blade flapping because of cross coupling. In other

words, the potentiometer not only moved with blade

feathering, but also moved a small amount with the blade

flapping.

The blade feathering motion is essentially

periodic. The largest component in the response is the

IP or about 8 hertz. The position of the swashplate

controls the blade feathering. The pilot positions the

swashplate through the control stick. Any changes in

control position would cause shifts in the attractor in

toroidal phase space. In this sample, the controls were

held steady by the pilot for the 5 second measurement.

Notice that monitoring blade feathering in

toroidal phase space allows for checking for steady

flight controls; an important parameter for deciding if

the data is good. Normally, the time histories for

longitudinal and lateral cyclic stick position and

collective stick position are monitored to decide if the

data is good.

2. Blade Flapping

Figure 10-2 presents the blade flapping data

measured by a potentiometer. Cross coupling with blade

feathering is present in this data. A small amount of

quantizing error is apparent by viewing the time history

(Note that quantization error may sometimes not be

apparent in the reduced plots presented in this
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dissertation). In this figure, about 60 quantum levels

encompass the peak to peak measurement out of the 1024

quantum levels available. However, blade flapping

appears periodic. The largest frequency component is the

IP.

3. Blade Flapwise Bending

Figures 10-3 through 10-5 present the rotor blade

flapwise bending measured by strain gages mounted on the

surface of the rotor blade. The locations of the strain

gages are at 15, 50 and 90 percent, respectively, of the

rotor radius measured out from the rotor hub. The data

from the outboard strain gages are an indication of the

effects of unsteady aerodynamics. The data from the

strain gage at 15 percent rotor radius is an indication

of the flapwise shear forces transmitted to the rotor

hub.

Quantizing error is apparent by examining the

time history of all three signals (only about 50 quantum

levels are used in each). The data from all the three

strain gages are mostly periodic with a small amount of

chaotic or random behavior. The source of this behavior

may be due to the rotor blade's unsteady aerodynamics.

The frequency content of flapwise bending varies

considerably with rotor radius.
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4. Blade Chordwise Bendin

Figure 10-6 presents the rotor blade chordwise

bending measured by a strain gage mounted on the surface

of the rotor blade. The location of the strain gage is

at 17 % of the rotor radius measured out from the rotor

hub. The data from this strain gage is an indication of

the edgewise shear forces transmitted to the rotor hub.

The chordwise bending has a strong IP and 4P components.

This bending appears more chaotic or random than the

flapwise bending. The source may be the rotor blade

lead-lag damper.

5. Blade Torsion

Figure 10-7 presents rotor blade torsion measured

by a strain gage mounted on the surface of the rotor

blade. The location of the strain gage is at 17 % of the

rotor radius out from the rotor hub. Torsional response

was about a third of chordwise or flapwise bending.

Although the peak to peak amplitude contains only 20

quantum levels, the signal appears to be periodic with

the strongest component at IP.

6. Rotor Mast Bending

Figures 10-8 and 10-9 present the longitudinal

and lateral mast bending respectively. The rotor mast on

the OH-6A is stationary relative to the fuselage. The

strain gages mounted on the mast and below the rotor head

provide an indication of the vibrations transmitted to
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the helicopter. The data from these strain gages reflect

vibrations after the rotor filtering of the flapwise and

edgewise rotor blade root shears. In theory, only the 4P

component should filter through.

The amplitude of the 4P component was more than

10 times greater than any other frequency in the

spectrum. Other components are also present in the

spectrum. The rotor acts as a filter, but does not

completely filter out all the other frequency components.

7. Pilot Seat Acceleration

Figures 10-10, 10-11, 10-12 depict the vertical,

longitudinal and lateral accelerations, respectively. A

triaxial accelerometer placed under the right pilot's

seat provides these accelerations. This main objective

of HHC is to reduce this acceleration. These signals

have the smallest quantization error of all the signals

presented. For these signals, over 100 quantum levels

encompass the peak to peak amplitudes.

Observe that chaotic or random vibrations are

indicated in all three directions of acceleration. The

broad band noise is at least 10 times the Fourier

transform calculation noise. At this airspeed, the broad

band noise contained about 34 percent of the total

vibratory energy in the acceleration signals. The 4P

contained the remaining 66 percent. HHC reduced these 4P
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vibrations by 90 percent, which meant a 60 percent

reduction in overall vibrations.

The Poincare sections show a large spread in the

attractors. The distance across the attractors is about

40 percent of peak to peak amplitude in all three

signals. In all of the other signals, the attractors

were compact and the greatest spread was about 20 percent

of peak to peak.

8. Tail Boom Vertical Bending

Figure 10-13 shows vertical bending of the tail

boom. The quantization error is the largest of the data

samples presented. Only 20 quantum levels represent the

entire peak to peak amplitudes. Although quantization

errors are high, the tail boom bending appears periodic

with strong 1 and 4P components.

Although not presented, lateral bending of the

tail boom had roughly the same characteristics as

vertical bending.

D. SEARCH FOR CHAOS

At this point, the presence of chaotic vibrations is

indicated in a qualitative way in some signals. However,

the observed chaotic vibrations may also be periodic

vibrations with superimposed random vibrations. This

section presents the investigation to characterize

quantitatively the observed chaos.
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The data from the vertical accelerometer located

under the pilot's seat are examined for evidence of

chaotic vibrations. This signal has the minimum

quantization error of all of the 49 signals that were

made available. It has the greatest indication of

chaotic vibrations. The HHC system was also conceived to

reduce this acceleration. Further, this is the very

signal that was presented as the 'Actual' signal in

Chapter 6 (that is why it was an example in that

chapter).

1. The Strange Attractor

Discovery of a strange attractor in a Poincare

section is a sure sign of chaos [Ref 6.15, 6.17, and

6.19]. Figure 10-14 presents a 3-D Poincare section of a

4-D hyperspace for 5 seconds of the vertical

accelerometer data.

The points seem to form a strange attractor.

They are arranged in the horseshoe like shape of the

simple stretching and folding process discussed in

Chapter 6.

Figure 10-14 plots 13 points, far too few to

deduce the presence of a strange attractor. For more

points, steady fight test data is needed for a duration

longer than 5 seconds. However, maintaining a steady

flight condition in a helicopter for longer than 5 to 10

seconds imposes practical difficulties. Wind tunnel test
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data for durations of about two minutes would be

worthwhile for further studies in chaos.

2. Implications of the.Lvaunov Exponent

The presence of chaos in a nonlinear dynamic

system implies a sensitive dependence to initial

conditions. That is, if two trajectories were to start

from neighboring initial conditions in phase space, then

they will move exponentially away from each other after a

certain interval of time. Hence, a chaotic system is

known to yield at least ONE positive Lyapunov exponent

[Ref 6.9].

The size of a positive exponent indicates the

time scale on which a dynamical system becomes

unpredictable. In other words, positive exponents

measure the rate at which a system loses information (Ref

10.1]. In Chapter 6, an averaged Lyapunov exponent

estimate of 0.3 to 1.7 bits/sec was presented for the

vertical accelerometer data. A 10 bit word measured this

signal. This signal, then, represents a system that

becomes completely unpredictable after 6 to 30 seconds,

since no bits of the original information remain after

this time. The small uncertainty in initial measurement

of the signal will cover the entire attractor. Thus all

information about the initial conditions are lost.

However, the real result is more complex. The

Lyapunov exponent is a time average of many computations
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of Equation 6.9. Figure 6-18 presents the computation of

the instantaneous Lyapunov exponent. The instantaneous

exponent varies wildly with a standard deviation of about

15 bits/sec. The peak to peak exponent is from + 67

bits/sec to - 52 bits/sec. A large positive exponent

implies that the predictability is lost in less than a

1/6 of a second or little more one rotor revolution.

Figure 7-2(b) confirms this result. An

intersection with the Poincare plane is shown for every

quarter revolution of the rotor for the vertical

acceleration trajectories. The trajectories are seen to

intersect the Poincare section at wildly different

locations while remaining within the attractor.

Earlier chapters showed that the helicopter

vibrations are linear and repeatable in the rotor time

domain for a single frequency. In the case of the OH-6A,

the frequency is the 4P. The Lyapunov exponent

calculations seem to indicate that to suppress vibrations

other than the 4P, an adaptive control system may be

required. Updating of the 'T' matrix must be done

several times during each rotor revolution. The typical

HHC system is known to update only once a rotor

revolution.

3. Implications of Fractal Dimension

The fractal correlation dimension, discussed in

Chapter 6, was computed for the vertical acceleration
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signal. The results are presented in Figure 6.22. To

obtain an asymptotic value, the pseudo phase space

dimensions were increased. The fractal dimension levels

off at a value of about 6.6. Similar studies were

performed for both lateral and longitudinal

accelerations. The final converged values for fractal

dimension are 6.3 and 6.4, respectively. Note that the

time histories for these three signals differ

significantly. Also note that unlike the Lyapunov

exponent algorithm, the fractal dimension algorithm was

not sensitive to small changes in input parameters and

gave consistent results.

The literature reports that obtaining a non-

integer for the asymptotic fractal dimension is a

definitive indication of chaos. A non-integer fractal

dimension also indicates the presence of a strange

attractor [Ref 6.13, 6.15, 6.17, 6.19]. However,

recently, Osborne and Provenzale [Ref 10.2] contend that

the sole observation of a non-integer fractal dimension

is not enough to infer the presence of a strange

attractor or chaos. They base their hypothesis on

finding a finite fractal dimension for colored white

noise. Figure 6.22 presents the fractal dimension of the

Random signal (generated by a random number generator).

The Random signal does not reach an asymptotic value.

Note that for a 'true' Random signal, generated without
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the truncation and round-off errors in a computer, the

fractal dimension should increase linearly with

increasing dimension of pseudo phase space (indicated by

the dark line in Figure 6.22).

In Figure 6.22, the fractal dimension curve for

the vertical acceleration data lies below the Random

signal's curve and above both the 32 hertz and Harmon

signal's curves. This signifies the fractal dimension

calculation for the Actual signal is a result of chaotic

vibrations and not random vibrations.

4. Chaos ?

The evidence points to chaos in some helicopter

vibrations. This conclusion is based on the non-integer

correlation dimension, the observation of broad-band

Fourier spectrum, the presence of a positive Lyapunov

exponent, together with the evidence of a strange

attractor in the Poincare sections.

E. CHAOS IN HELICOPTERS - WHAT DOES IT MEAN ?

The presence of chaos in helicopter vibrations

imposes limits on the ability to predict and control

vibrations using active vibration control systems. A

geaeral belief is that accurate prediction is assumed

possible by gathering and processing enough information.

A simple deterministic system, even with only a few

clements, can result in chaotic behavior. Chaotic
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behavior is a system characteristic and gathering more

information does not eliminate it or increase the

predictability beyond a certain limit.

Many helicopter simulation programs make the

assumption that helicopter vibrations are a sum of

several harmonic functions. The second example used in

the chapter 6, the Harmons example illustrated the

effect of this assumption. Often, discrepancies between

experimental and computational results may be explained

by the presence of chaos in the experimental results.

Chaos can arise from a finite number of non-linear

deterministic equations. Modeling of random vibrations,

on the other hand, is limited to a statistical

description of the vibrations. The fractal dimension

calculation seems to indicate that at least seven coupled

first order differential equation can model the pilot's

seat vibration response. Future simulation programs may

more accurately model vibrations by considering the

implications of the nonlinearities present in the system,

as evidenced by the chaos.

Finally, only non-linear systems are capable of

producing chaos. Typical sources of nonlinearities in

helicopters are unsteady aerodynamic effects, large

structural deformation, nonlinear material behavior, and

control laws. Investigation of helicopter response for
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chaos can help identify the effects of these

nonlinearities.

F. HOW ABOUT HHC ?

On analyzing the data with HHC on, HHC did not seem

to change the chaotic behavior of the vibrations.

Figures 8-2 and 8-3-demonstrated that HHC simply moved

the attractor, but it did not change the size of the

attractor in toroidal phase space.

Figure 10-15 shows the effects of open loop HHC in 3-

D phase space. The data presented is the vertical

acceleration under the pilot's seat at 60 knots. The

figure presents three conditions; lateral HHC at 270

degree controller phase, baseline (HHC off), and lateral

HHC at 90 degree controller phase. Note that minimum

vibrations were achieved at 270 degrees controller phase

while 90 degree phase lead to worst vibrations. Figure

10-16 presents effects of Closed Loop HHC. The data

presented is the vertical acceleration at 100 knots.

Both figures show the attractor in 3-D phase space and a

Poincare section of this attractor.

The HHC makes the vibrations appear more chaotic in

3-D phase space. In fact, what actually happens is that

the HHC removes the deterministic component (the 4P) from

the vibrations, leaving the chaotic portion behind.
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To further study the effects of HHC, Lyapunov

exponent and fractal correlation dimension were computed.

Both HHC on and HHC off conditions were considered. No

significant changes were noted in both the exponent and

the fractal dimension. The fractal dimension changed

little with HHC on or off, regardless of mode. The

Lyapunov exponent also remained in the range of 0.3 to

1.7. HHC does not appear to change the chaotic nature of

helicopter vibrations either way.

E. SUMMARY

Although helicopter vibrations are generally assumed

to be periodic, the evidence suggests that some

helicopter vibrations are chaotic.
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Figure 10-2. Blade Flapping Angle. (a) Time
history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section

of attractor at 270 degrees azimuth.
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history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.
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history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.

164



(a ) tt .i +,t (b ) 1,1, , s, E,,,,1,,

I p.

I CCC (
I bee

ICC t. IC,

4Fp I'
4001

2to

IF

(d) POI NCAPE SET IU OF 1ORLIS

22CC

(c) bci I CCC

history (b)6 FouierpoeCr s spcraBenig. plot.(c

Attractor in toroidal phase space. (d) Poincare section
of attractor at 270 degrees azimuth.

165



(a) iniE sEimis (b) rO, I SPECT,,,,o

-* I ,
' '

.68

(d 1~fCA3 9f 0i I O

iIF

- U11 P

-,At

ii i"

li~.. i, .,

-,Re

2P?

24 P 2 -22 at - e I8 V alt '2 -at -Pi -6e .. 8 -20
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power spectral density plot. (c) Attractor in toroidal
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Figure 10-8. Mast Longitudinal Bending. (a) Time

history. (b) Fourier power spectral density plot. (c)
Attractor in toroidal phase space. (d) Poincare section

of attractor at 270 degrees azimuth.
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Figure 10-9. Mast Lateral Bending. (a) Time
history. (b) Fourier power spectral density plot. (c)
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Figure i0-10. Vertical Pilot Beat Acceleration.
(a) Time history. (b) Fourier power spectral density
plot. (c) Attractor in toroidal phase space. (d)
Poincare section of attractor at 270 degrees azimuth.
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Figure 10-11. Longitudinal Pilot Beat Acceleration.

(a) Time history. (b) Fourier power spectral density

plot. (c) Attractor in toroidal phase space. (d)
Poincare section of attractor at 270 degrees azimuth.
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Figure 10-12. Lateral Pilot Seat Acceleration. 
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Time history. (b) Fourier power spectral density plot.
(c) Attractor in toroidal phase space. (d) Poincare
section of attractor at 270 degrees azimuth.
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Figure 10-14. A Strange Attractor. A 3-D Poincare
section of the pilot seat vertical acceleration. The
section is formed by strobing the fourth data array, F(T-
30), at a value of 1.37.
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XI. CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH

The geometric and topological methods of Chaos theory

were applied, for the first time, to study flight test

data. The data used in this research were from the

McDonnell Douglas OH-6A HHC test helicopter. New

engineering applications of the Chaos methods were

demonstrated with the HHC flight test data.

Although helicopter vibrations are known to be mostly

periodic, evidence of chaotic vibrations was found in

this study. First, the presence of a strange attractor

is shown by computing the Lyapunov exponent and fractal

correlation dimension. Then, a broad band Fourier

spectrum and a well defined attractor in pseudo phase

space were also observed.

An important outcome of this research is that a limit

exists to HHC vibration reduction due to the presence of

chaos. A new technique based on a relationship between

the Chaos methods (the Poincare section and Van der Pol

plane) and the vibration amplitude and phase was

discovered. This newly introduced technique results in

the following: 1) it gives the limits of HHC vibration

reduction, 2) it allows rapid determination of best

phase for a HHC controller, 3) it determines the minimur

HHC controller requirement for any helicopter fror a few
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minutes duration of flight test data (as an example, for

the OH-6A, a scheduled gain controller for HHC appears to

be adequate for steady level flight), 4) it shows that

the HHC controller transfer matrix is linear and

repeatable when the vibrations are defined in the "Rotor

time domain" and the matrix is nonlinear and

nonrepeatable when the vibrations are defined in the

"Clock Time Domain." These deductions have major

implications in the design and characterization of

controllers.

As a result, this technique will reduce future HHC

flight test requirements. Further, although the

helicopter must be instrumented, the technique does not

require the helicopter to be equipped with HHC to

determine the limit of HHC performance or to determine

the minimum HHC controller requirement.

These approaches also have potential applications to

other vibration control and flight testing problems.

Further investigation of chaos in helicopter vibrations

is recommended by using several minutes duration of wind

tunnel test data. Also, the methods introduced here

should be tested with maneuvering flight test data in

addition to the steady level flight investigated here.
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APPENDIX A

DESCRIPTION OF COMPUTER CODE

A. PURPOSE

This appendix provides a brief description of the

programs used in this dissertation. All programs were

written in Fortran. Calls were made to GRAFkit, a suite

of Fortran callable graphical utilities. It is produced

by SCO, Inc. of Louisville, Colorado. GRAFkit is similar

to DISSPLA or PV WAVE.

A users manual, source code listing and source code

on disk is available by writing the Aeronautics and

Astronautics Department, U. S. Naval Postgraduate School,

Monterey, Ca.

B. PROGRAM CHAOS

The program CHAOS is a calling program for the

subroutines described in this section. It analyzes

flight test data using the classical time and frequency

domain methods as well as the new chaos methods. Figure

A-1 presents a flow chart for this program.

1. Subroutine TIMSER

The subroutine TIMSER (for TIMe SERies) plots the

data file as a time series. Different start and stop

times may be selected.
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2. Subroutine TORUS

The subroutine TORUS (for TORoidal phase Space)

plots the trajectory onto 3-D toroidal phase space. Rate

of plotting can be fixed at a single frequency or

synchronized with the helicopter rotor. The resulting 3-

D attractor may be viewed from any perspective.

3. Subroutine PCARE

The subroutine PCARE (for PoinCARE section) plots

the Poincare section of a toroidal phase space. Rate of

plotting and azimuth angle for the section may be

selected.

4. Subroutine PPLANE

The subroutine PPLANE (for Phase PLANE) plots the

trajectory onto a 2-D phase plane.

5. Subroutine VDP

The subroutine VDP (for Van Der Pol plane) plots

the trajectory onto a Van der Pol plane. The rate of

untwisting is selectable.

6. Subroutine PSPACE

The subroutine PSPACE (for Phase SPACE) plots the

trajectory onto a 3-D phase space. The resulting 3-D

attractor may be viewed from any perspective.

7. Subroutine PCARE2

The subroutine PCARE2 (for PoinCARE 2-d section)

plots the 2-D space strobed Poincare section of the 3-D

phase space. The orientation of the section, the
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direction, and the value to take the section are all

selectable.

8. Subroutine PCARE3

The subroutine PCARE3 (for PoinCARE 3-d section)

plots the 3-D space strobed Poincare section of the 4-D

hyper space. The orientation, direction, and value to

take the section at are all selectable. The resulting 3-

D section may be viewed from any perspective.

9. Subroutine PSD

The subroutine PSD (for Power Spectral Density)

compute and plots the Fourier power spectrum. Seven

different window functions are available and the number

of points to transform is selectable.

10. Subroutine STATS

The subroutine STATS (for STATisticS) computes

the time domain statistics. It computes the average,

average deviation, variance, standard deviation,

skewness, kurtosis and maximum and minimum of the data

file.

II. Subroutine LAP

The subroutine LAP (for LyAPunov exponent)

estimates the largest non-negative Lyapunov Exponent from

a time series.
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12. Subroutine COD

The subroutine COD (for fractal COrrelation

Dimension) estimates the fractal correlation dimension

from a time series.

13. Subroutine READATA

The subroutine READATA (for REAd DATA) reads data

from a file. The data may be differentiated, integrated

or time shifted to form a 'fake' observable. The

subroutine counts the number of data points in the file

and also finds the maximum and minimum amplitude. This

subroutine is specialized to read HHC data.

14. Subroutine COLOR

The subroutine COLOR setups the color table for

various printers and screens.

15. Subroutine READPIP

The subroutine READPIP (for READ PIPer) reads a

pipper data file created by the utility program PIPPER.

It passes the time the pipper fires to the subroutines

TORUS, PCARE, and VDP.

C. UTILITY PROGRAMS

1. Program PIPPER

The program PIPPER reads the HHC data pipper data

file (over 6000 data points) and generates a new data

file (less than 50 points) which contains the time the
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rotor pipper fired. The subroutine READPIP reads this

file during the program CHAOS execution.

2. ProQram EOPLOT

The program EPPLOT (for EQuation PLOT) allows

analysis of derived quantities by multiplying, dividing,

adding, subtracting or raising to a power HHC data files.

The results may be immediately plotted or they may be

sent to a file for later analysis by program CHAOS.

3. Program CORRECTDAT

The program CORRECTDAT (for CORRECTion of DATa)

rewrites 307.5 hertz data into the standard HHC 1230

Hertz sampling rate format.

4. Program CHKTIM

The program CHKTIM (for CHecK TIMe) finds the

errors in the data files caused by the McDonnell Douglas

Helicopter Company's conversion from PCM format into

ASCII format.

5. Program TDATA

The program TDATA (for Test DATA) generates a

file of test data usable by the program CHAOS or EQPLOT.
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CHAOS - The Program
Chaos Color

Readata I mser Tor us Pcare Pplane Vdp Pspace

t,3, a I ir Readplp peadplp peadpip

L

.r'cae 2 care3Pr! Ss La cq Cc

ji 
j

P ,

Figure A-i. Flow Diagram for program Chaos.
Program is written in Fortran. For a copy of the users
manual and source code, write the Naval Postgraduate
School.
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APPENDIX B

HHC MEASUREMENT LIST

This appendix presents the measurements available

from the OH-6A helicopter. Given are the McDonnell

Douglas measurement number, the measurement name, the

units of the measurement and frequency cutoff of the

anti-aliasing filter (if known). The measurements were

translated into ASCII files, readable by a VAX computer.

They were stored in data files with ten measurements per

file. For the open luop test data, to store all 49

measurements at each flight test condition took 5 groups

of files. In the case of closed loop test data, only 9

measurements were made available. Hence only one data

file represented all the data at one flight test

condition for closed loop data.

Each open loop test data file was given a 7 character

file name. The first letter of the file name indicated

mode (i.e. 'L' for lateral excitation), the second number

indicated airspeed (i.e. '6' for 60 knots, 'I' for 100

knots), the next two numbers the controller phase (i.e.

'BL' for baseline, '33' for 330 degrees) and the last

letter indicated which group of files (i.e. '-A' for the

first group, '_E' for the last group).

Each closed loop test data file was given a 7

character file name. The first two letters indicated
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mode (i.e. 'CL' for closed loop), the third number

indicated airspeed, and the last two or three characters

indicated HHC on or off (i.e. 'HHC' for HHC on, and 'BL'

for baseline).

Open Loop Data

L***_A.DAT

1000 M.R. Pitch Link Load B1 Lbs 250 Hz

1001 M.R. Blade Flapwise Bending @ 15% In-lbs 250 l1z

1002 M.R. Blade Flapwise Bending @ 50% In-lbs 250 Hz

1003 M.R. Blade Chordwise Bending @ 17% In-lbs 250 11z

1004 M.R. Mast Longitudinal Bending @ W.L. 68.25 In-lbs 250 lHz

1005 M.R. Mast Lateral Bending @ W.L 68.25 In-lbs 250 Xz

1006 Longitudinal Load Link Lbs

1009 M.R. Mast Longitudinal Bending @ O.L. 73.0 In-lbs 250 Hz

1010 M.R. Mast Lateral Bending @ W.L. 73.0 In-lbs 250 Hz

1038 M.R. Pitch Link Load B2 Lbs 250 Hz

L***_B.DAT

1020 M.R. Torque In-lbs 250 11z

1022 M.R. Blade Chordwise Bending @ 50% In-lbs 250 11z

1024 M.R. Blade Flapwise Bending @ 20% In-lbs 250 liz
1025 M.R. Blade Flapwise Bending @ 30% In-lbs 250 1iz

1026 Y.R. Blade Flapwise Bending @ 70% In-lbs 230 11z

1027 M.R. Blade Torsion @ 17% In-lbs 250 liz

1028 11R. Blade Torsion @ 50% In-lbs 250 liz
1030 M.R. Blade Flapwise Bending @ 90% In-lbs 250 1iz

9017 HHC Left Lateral Actuator Position In-lbs 250 liz
9026 HHC Right Lateral Actuator Position In-lbs 75 liz

L***_C.DAT

9028 HHC Longitudinal Actuator Position In-Lbs 250 liz
1103 Tailboom Vertical Bending @ Sta 211 In-lbs
1104 Tailboom Lateral Bending @ Sta 211 In-lbs
1200 Collective Control Rod Load In-lbs
1201 HHC Longitudinal Actuator Load No. 3 Lbs 75 liz
1202 HHC Left Lateral Actuator Load Lbs 75 11z
1203 H11C Right Lateral Actuator Load Lbs 75 liz
2002 Boom Static Pressure PSI
2124 Boom Airspeed Knots
3002 Exhaust Gas Temperature Deg C

L***_D.DAT

5008 Vertical Accel - Right Seat G's 75 Iz
5009 Lateral Accel - Right Seat G's 75 liz
5010 Longitudinal Accel - Right Seat G's 75 Hz
5052 HHC Longitudinal Feedback Accelerometer G's 250 1Iz
5053 H1IC Lateral Feedback Accelerometer G's 250 Hlz
5054 H1C Vertical Feedback Accelerometer G's 250 liz

6007 C.G. Vertical Acceleration Sta 100 G's 6 liz
6008 C.G. Lateral Acceleration Sta 100 G's 6 liz
6009 C.G. Longitudinal Acceleration Sta 100 G's 6 iz
6010 Vertical Acceleration at C.G. High Frequency G's 250 ]iz
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L* **E.DAT

6011 Lateral Acceleration at C.G. High Frequency G's 250 Hz
6012 Longitudinal Acceleration at C.G. High Frequency G's 250 1Iz
9003 Lead Lag Angle M.R. 1 Deg 250 Hz
9001 Main Rotor Flap Angle Blade 1 Deg 250 Hz
9002 Feathering Angle M.R.l Deg 250 Hz
9027 M.R. Azimuth Index Counts 250 Hz
8002 HHC ECU Sine Reference Output Sin/Cos
8003 HHC ECU Cosine Reference Output Sin/Cos
7001 Main Rotor RPM PercentM

Closed Loop Data

CL*HHC.DAT or CH*BL.DAT

5008 Vertical Accel - Right Seat G's 75 11z

5009 Lateral Accel - Right Seat G's 75 11z
5010 Longitudinal Accel - Right Seat G's 75 Hz
6010 Vertical Accel at C.G. at high frequency G's 250 lz
6011 Lateral Accel at C.G. at high frequency G's 250 liz
6012 Longitudinal Accel at C.G. at high frequency G's 250 liz
9017 HIC Left Actuator Position In 75 liz
9026 lIiIC Right Actuator Position In 75 lIz
9027 H11C Longitudinal Actuator Position In 75 liz
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